【题目】已知函数有两个极值点, ().
(1)求实数的取值范围;
(2)设,若函数的两个极值点恰为函数的两个零点,当时,求的最小值.
【答案】(1).(2).
【解析】试题分析:(I)求出函数f(x)的导数,可得方程x2-ax+1=0有两个不相等的正根,即可求出a的范围;(II)对函数g(x)求导数,利用极值的定义得出g'(x)=0时存在两正根x1,x2;再利用判别式以及根与系数的关系,结合零点的定义,构造函数,利用导数即可求出函数y的最小值
解析:
(1)的定义域为,
,
令,即,要使在上有两个极值点,
则方程有两个不相等的正根,
则解得,
即.
(2),
由于, 为的两个零点,
即, ,
两式相减得: .
∴,
又,
∴,
故,
设,∵, 为的两根,
∴故,
∴,又,
即,
解得或,
因此,
此时,
,
即函数在单调递减,
∴当时, 取得最小值,
∴.
即所求最小值为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy 中,曲线C1的参数方程为:(),M是上的动点,P点满足,P点的轨迹为曲线.
(1)求的参数方程;
(2)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究某种图书每册的成本费(元)与印刷数(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中, .
(1)根据散点图判断: 与哪一个更适宜作为每册成本费(元)与印刷数(千册)的回归方程类型?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(回归系数的结果精确到0.01);
(3)若每册书定价为10元,则至少应该印刷多少册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计分别为, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多边形中, , , , , 是线段上的一点,且,若将沿折起,得到几何体.
(1)试问:直线与平面是否有公共点?并说明理由;
(2)若,且平面平面,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在中, , , , 为边的中点,现把沿折叠,使其与构成如图2所示的三棱锥,且.
(1)求证:平面平面;
(2)求平面与平面夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018届四川省成都市第七中学高三上学期模拟】已知椭圆的一个焦点,且过点,右顶点为,经过点的动直线与椭圆交于两点.
(1)求椭圆的方程;
(2)是椭圆上一点, 的角平分线交轴于,求的长;
(3)在轴上是否存在一点,使得点关于轴的对称点落在上?若存在,求出的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com