精英家教网 > 高中数学 > 题目详情

【题目】某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:

(1)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;

(2)根据以上数据完成下面的列联表:在犯错概率小于的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

,其中.

【答案】(1)(2)在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.

【解析】试题分析:(1)计算乙班参加测试的90(分)以上的同学人数,以及120分以人数,利用列举法求出对应事件数,求出对应的概率值;
(2)计算甲、乙两班优秀与不优秀的人数,填写列联表,计算,对照数表得出概率结论.

试题解析:(1)乙班参加测试的90(分)以上的同学有人,记为,其中成绩优秀120分以上有人,记为,从这6名学生随机抽取两名的基本事件有:

共15个,设事件表示恰有一位学生成绩优秀,符合要求的事件有共8个;

所以

(2)计算甲班优秀的人数为,不优秀的人数为16,乙班优秀人数为2,不优秀的人数为18,填写列联表,如下:

计算

所以在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为实数,.

(1)若,求上的最大值和最小值;

(2)若上都递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线处的切线方程;

(2)设函数,求函数的单调区间;

(3)若,在上存在一点,使得成立,

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,抛物线y2 (a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线和直线交于点.以为起点,再从曲线上任取两个点分别为终点得到两个向量,记这两个向量的数量积为.若去九寨沟;若去泰山;若去长白山; 去武夷山.

(1)若从这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和去泰山的概率;

(2)按上述方案,小明在曲线上取点作为向量的终点,则小明决定去武夷山.点在曲线上运动,若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调区间;

(2)设是否存在极值,若存在,请求出极值;若不存在,请说明

理由;

(3)当时.证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-ax+ln(x+1)(a∈R).

(1)当a=2时,求函数f(x)的极值点;

(2)若函数f(x)在区间(0,1)上恒有f′(x)>x,求实数a的取值范围;

(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),证明数列{cn}是单调递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=4,直线l:x+y=2.以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系.

(1)将圆C和直线l的方程化为极坐标方程;

(2)P是l上的点,射线OP交圆C于点R,又点Q在OP上且满足|OQ|·|OP|=|OR|2,当点P在l上移动时,求点Q轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+ax+b(a,b∈R)的定义域为[-1,1],且|f(x)|的最大值为M.

(1)证明:|1+b|≤M;

(2)证明:M≥.

查看答案和解析>>

同步练习册答案