精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是 . ① f(﹣ )<f(﹣
f( )<f(
③f(0)>2f(
④f(0)> f(

【答案】①
【解析】解:构造函数g(x)=

则g′(x)= (f′(x)cosx+f(x)sinx),

∵对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0,

∴g′(x)>0,即函数g(x)在x∈(﹣ )单调递增,

则g(﹣ )<g(﹣ ),即

,即 f(﹣ )<f(﹣ ),故①正确,

g( )>g( ),即

,即 f( )>f( ),故②错误,

g(0)<g( ),即

∴f(0)<2f( ),故③错误,

g(0)<g( ),即

∴f(0)< ,即f(0)< f( ),故④错误,

所以答案是:①.

【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数,据此估计,该运动员三次投篮恰有两次命中的概率为( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40
B.0.30
C.0.35
D.0.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为 . (Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ (m∈R)在区间[1,e]取得最小值4,则m=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex+ax2+2x+1在x=﹣1处取得极值.
(1)求函数f(x)的单调区间;
(2)若函数y=f(x)﹣m﹣1在[﹣2,2]上恰有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣3ax+b.
(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值.
(2)在(1)的条件下求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣bx+2(a>0)
(1)在x=1时有极值0,试求函数f(x)的解析式;
(2)求f(x)在x=2处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|(x+2m)(x﹣m+4)<0},其中m∈R,集合B={x| >0}.
(1)若BA,求实数m的取值范围;
(2)若A∩B=,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F是抛物线x2=4y的焦点,P是抛物线上的一个动点,且A的坐标为(0,﹣1),则 的最小值等于

查看答案和解析>>

同步练习册答案