精英家教网 > 高中数学 > 题目详情
(2013•天津一模)已知数列{an}中a1=2,an+1=2-
1
an
,数列{bn}中bn=
1
an-1
,其中 n∈N*
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)设Sn是数列{
1
3
bn
}的前n项和,求
1
S1
+
1
S2
+…+
1
Sn

(Ⅲ)设Tn是数列{ (
1
3
)nbn }
的前n项和,求证:Tn
3
4
分析:(Ⅰ)由条件可得bn+1=
an
an-1
,再由bn=
1
an-1
,从而得到  bn+1-bn=
an
an-1
-
1
an-1
=1
,由此证得结论
(Ⅱ)由(Ⅰ)可知bn=n,于是
1
Sn
=
6
n(n+1)
=6(
1
n
-
1
n+1
)
,用裂项法求出
1
S1
+
1
S2
+…+
1
Sn
的值.
(Ⅲ)由(Ⅰ)可知 (
1
3
)nbn
=n•(
1
3
)n
,求出Tn的解析式,可得
1
3
Tn 的解析式,用错位相减法求出Tn的解析式,
从而可得要证的不等式成立.
解答:解:(Ⅰ)bn+1=
1
an+1-1
=
1
1-
1
an
=
an
an-1
,而 bn=
1
an-1

bn+1-bn=
an
an-1
-
1
an-1
=1
.n∈N*
∴{bn}是首项为b1=
1
a1-1
=1
,公差为1的等差数列.(5分)
(Ⅱ)由(Ⅰ)可知bn=n,
1
3
bn=
1
3
n Sn=
1
3
(1+2+…+n)=
n(n+1)
6

于是
1
Sn
=
6
n(n+1)
=6(
1
n
-
1
n+1
)

故有
1
S1
+
1
S2
+…+
1
Sn
=6(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)

=6(1-
1
n+1
)=
6n
n+1
.(9分)
(Ⅲ)证明:由(Ⅰ)可知 (
1
3
)nbn
=n•(
1
3
)n

Tn=1•
1
3
+2•(
1
3
)2+…+n•(
1
3
)n
.∴
1
3
Tn=1•(
1
3
)2+2•(
1
3
)3+…+(n-1)(
1
3
)n+n•(
1
3
)n+1

则 
2
3
Tn=
1
3
+(
1
3
)2+(
1
3
)3
+…+(
1
3
)n-n•(
1
3
)n+1
=
1
2
[1-(
1
3
)
n
]-n•(
1
3
)n+1

∴Tn=
3
4
-
1
4
(
1
3
)n-1-
n
2
•(
1
3
)n
3
4
.     (14分)
点评:本题主要考查等差关系的确定,等比数列的前n项和公式的应用,用裂项法、错位相减法对数列求和,数列与不等式的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津一模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(I)求椭圆E的方程;
(Ⅱ)点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由:
(Ⅲ)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)抛物线y2=2px(p>0)上一点M(1,m) (m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于
1
9
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)i是虚数单位,复数
3+i
1+i
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)设x∈R,则“x>0“是“x+
1
x
≥2
“的(  )

查看答案和解析>>

同步练习册答案