精英家教网 > 高中数学 > 题目详情

【题目】下列有关命题的说法正确的是(

A.命题,则的否命题为:,则

B.的充要条件

C.直线的充分不必要条件

D.命题,则的逆否命题为真命题

【答案】C

【解析】

A,命题的否定为双否,可判断错误;对B的解有两个,显然充要条件不成立;对C,两直线垂直还包括的情况,充分不必要条件成立;对D,余弦函数为周期函数,显然一个函数值对应多个自变量,可判断错误

命题,则的否命题为:,则,所以A不正确;

的充分不必要条件,所以B不正确;

直线的充要条件,则的充分不必要条件,所以C正确;

命题,则的逆否命题为:,则,显然不正确,是假命题;

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 上单调递增,

(1)若函数有实数零点,求满足条件的实数的集合

(2)若对于任意的时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中,与三角形的三条边所在直线的距离相等的点有且只有四个.类似的:在立体几何中,与正四面体的六条棱所在直线的距离相等的点 ( )

A. 有且只有一个 B. 有且只有三个 C. 有且只有四个 D. 有且只有五个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在199319936688张卡片上,每张写上一个自然数,恰写了1,2,…,199319936688这199319936688个自然数.问能否把这些卡片分成三组,使得第二组卡片上写的数之总和比第一组卡片上写的数之总和大33,而第三组卡片上写的数之总和比第二组卡片上写的数之总和大102?

若能,请给出一种分组方法.若不能,请你说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设,当时,求函数的定义域,判断并证明函数的奇偶性;

2)是否存在实数,使函数上单调递减,且最小值为1?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出函数如下表,则f〔g(x)〕的值域为( )

x

1

2

3

4

g(x)

1

1

3

3

x

1

2

3

4

f(x)

4

3

2

1

A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,通过抽样,得到100位员工每人手机月平均使用流量L(单位:M)的数据,其频率分布直方图如图.

1)从该企业的100位员工中随机抽取1人,求手机月平均使用流量不超过900M的概率;

(2)据了解,某网络运营商推出两款流量套餐,详情如下:

套餐名称

月套餐费(单位:元)

月套餐流量(单位:M

A

20

700

B

30

1000

流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以平均费用为决策依据,该企业订购哪一款套餐更经济?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了奖励评选出来的15校园科技小小发明家,设置了一、二、三等奖:

①一等奖1000/名,二等奖600/名,三等奖400/名,奖金总额不超过9000元;

②一等奖人数不得超过二等奖人数,二等奖人数不得超过三等奖人数.

则三等奖的奖金总额最少为(

A.2400B.3000C.6000D.6600

查看答案和解析>>

同步练习册答案