精英家教网 > 高中数学 > 题目详情
4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(  )
A.12种B.24种C.30种D.36种
由题意知本题是一个分步计数问题,
∵恰有2人选修课程甲,共有C42=6种结果,
∴余下的两个人各有两种选法,共有2×2=4种结果,
根据分步计数原理知共有6×4=24种结果
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(  )

A.12种     B.24种 

C.30种     D.36种

查看答案和解析>>

科目:高中数学 来源:2011年全国普通高等学校招生统一考试文科数学 题型:选择题

4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有

(A) 12种   (B) 24种   (C) 30种   (D)36种

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学文2(全国卷)解析版 题型:选择题

 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有

(A) 12种   (B) 24种   (C) 30种   (D)36种

 

查看答案和解析>>

同步练习册答案