精英家教网 > 高中数学 > 题目详情
设函数f(x)=p(x-
1
x
)-2lnx
g(x)=
2e
x
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.
分析:(1)求导f′(x)=
px2-2x+p
x2
,要使“f(x)为单调增函数”,转化为“f′(x)≥0恒成立”,再转化为“p≥
2x
x2+1
=
2
x+
1
x
恒成立”,由最值法求解.同理,要使“f(x)为单调减函数”,转化为“f′(x)≤0恒成立”,再转化为“p≤
2x
x2+1
=
2
x+
1
x
恒成立”,由最值法求解,最后两个结果取并集.
(2)因为“在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立”,要转化为“f(x)max>g(x)min”解决,易知g(x)=
2e
x
在[1,e]上为减函数,所以g(x)∈[2,2e],①当p≤0时,f(x)在[1,e]上递减;②当p≥1时,f(x)在[1,e]上递增;③当0<p<1时,两者作差比较.
解答:解:(1)f′(x)=
px2-2x+p
x2
,要使“f(x)为单调增函数”,转化为“f′(x)≥0恒成立”,即p≥
2x
x2+1
=
2
x+
1
x
恒成立,又
2
x+
1
x
≤1
,所以当p≥1时,f(x)在(0,+∞)为单调增函数.
同理,要使“f(x)为单调减函数”,转化为“f′(x)≤0恒成立,再转化为“p≤
2x
x2+1
=
2
x+
1
x
恒成立”,又
2
x+
1
x
>0
,所以当p≤0时,f(x)在(0,+∞)为单调减函数.
综上所述,f(x)在(0,+∞)为单调函数,p的取值范围为p≥1或p≤0
(2)因g(x)=
2e
x
在[1,e]上为减函数,所以g(x)∈[2,2e]
①当p≤0时,由(1)知f(x)在[1,e]上递减⇒f(x)max=f(1)=0<2,不合题意
②当p≥1时,由(1)知f(x)在[1,e]上递增,f(1)<2,又g(x)在[1,e]上为减函数,
故只需f(x)max>g(x)min,x∈[1,e],
即:f(e)=p(e-
1
e
)-2lne>2⇒p>
4e
e2-1

③当0<p<1时,因x-
1
x
≥0,x∈[1,e]
所以f(x)=p(x-
1
x
)-2lnx≤(x-
1
x
)-2lnx≤e-
1
e
-2lne<2不合题意
综上,p的取值范围为(
4e
e2-1
,+∞)
点评:本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,已知单调性求参数的范围往往转化为求相应函数的最值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是实数,e是自然对数的底数)
(1)若函数f(x)在定义域内不单调,求实数p的取值范围;
(2)若在[1,e]上至少存在一个x0,使得f(x0)>g(x0),求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx
g(x)=
2e
x
,x∈[2,e],若p>1,且对任意x1∈[2,e],存在x2∈[2,e],使不等式f(x1)>g(x2)成立,则p的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
.(p是实数,e是自然对数的底数)
(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(2)若f(x)在其定义域内为单调函数,求p的取值范围;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p·q,其中向量p=(sinx,cosx+sinx),q=(2cosx,cosx-sinx),x∈R.

(1)求f()的值及函数f(x)的最大值;

(2)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案