精英家教网 > 高中数学 > 题目详情
已知以下四个命题:
①如果x1,x2是一元二次方程的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2}
②若f(x)是奇函数,则f(0)=0;
③若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
④若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中为真命题的是______(填上你认为正确的序号).
①若a>0,则不等式ax2+bx+c<0的解集为{x|x1<x<x2};
若a<0,则不等式ax2+bx+c<0的解集为{x|x<x1或x>x2};故①错;
②如f(x)=
1
x
是奇函数,但是在=0处无意义,故②错;
③∵集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={7,22,52,…}={x|x=15m-8,m∈N+}
∴③正确;
④∵函数f(x)在(-∞,+∞)上递增,且a+b≥0,
∴a≥-b,∴f(a)≥f(-b),
同理f(b)≥f(-a),跟据同向不等式具有可加性,得f(a)+f(b)≥f(-a)+f(-b).
故④正确.
故答案为③④.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知以下四个命题:
①如果x1,x2是一元二次方程的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2}
②若f(x)是奇函数,则f(0)=0;
③若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
④若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中为真命题的是
 
(填上你认为正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2}.
②若
x-1x-2
≤0
,则(x-1)(x-2)≤0.
③“若M={-1,0,1},则x2-2x+m>0的解集是实数集R”的逆否命题.
④若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中为真命题的是
 
(填上你认为正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若
x-1x-2
≤0
,则(x-1)(x-2)≤0;
③“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.其中为真命题的是
 
(填上你认为正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为
{x|x1<x<x2};
②“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
③若
x-1
x-2
≤0,则(x-1)(x-2)≤0.
④直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是(1,
5
4
)

其中为真命题的是
 
(填上你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下四个命题(  )
①命题“若x=2则x2=4”的逆否命题;
②“a=
π
4
”是“sin2a=1”的充要条件
③命题p:?x∈R,x-x+1<0,则?p:?x∈R,x-x+1>0;
④若p∧q为假,p∨q为真;则p、q有且仅有一个是真命题;
其中正确的是(  )

查看答案和解析>>

同步练习册答案