精英家教网 > 高中数学 > 题目详情
18.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是(  )
A.(-∞,8]B.(-∞,8)C.(8,+∞)D.[8,+∞)

分析 利用绝对值的意义求得|x-5|+|x+3|最小值为8,由此可得实数a的取值范围.

解答 解:由于|x-5|+|x+3|表示数轴上的x对应点到5和-3对应点的距离之和,其最小值为8,
再由关于实数x的不等式|x-5|+|x+3|<a无解,可得a≤8,
故选:A.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,求得|x-5|+|x+3|最小值为8,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.正方体ABCDA1B1C1D1的棱长为1,在正方体内随机取点M,则使四棱锥M-ABCD的体积小于$\frac{1}{6}$的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知以y=±$\sqrt{3}$x为渐近线的双曲线D:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦点分别为F1,F2,若P为双曲线D右支上任意一点,则$\frac{{|P{F_1}|-|P{F_2}|}}{{|P{F_1}|+|P{F_2}|}}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若某市8所中学参加中学生比赛的得分用茎叶图表示(如图)其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(  )
A.91    5.5B.91     5C.92     5.5D.92     5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在凸四边形ABCD中,对角线BD不平分对角中的任意一个.点P在四边形ABCD内部,并且满足∠PBC=∠DBA和∠PDC=∠BDA.若A,B,C,D四点共圆,证明:AP=CP.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列结论:①命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②要得到函数y=sin($\frac{x}{2}$-$\frac{π}{4}$)的图象,只需将y=sin$\frac{x}{2}$的图象向右平移$\frac{π}{4}$个单位;
③数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分不必要条件;
④命题“若x=y,则sinx=siny”的逆否命题为真命题.其中正确的是(  )
A.①②④B.①③C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若$\underset{lim}{x→∞}(\frac{{x}^{2}+1}{x+1}-ax-b)=0$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,既是偶函数又在(-∞,0)上单调递增的是(  )
A.$f(x)=\frac{1}{x^2}$B.f(x)=x2+1C.f(x)=x3D.f(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x<0,则ln(x+1)<0的否命题是若x≥0,则ln(x+1)≥0.

查看答案和解析>>

同步练习册答案