精英家教网 > 高中数学 > 题目详情
已知数列{an}是等差数列,a1+a2+a3=15,数列{bn}是等比数列,b1b2b3=27.
(1)若a1=b2,a4=b3.求数列{an}和{bn}的通项公式;
(2)若a1+b1,a2+b2,a3+b3是正整数且成等比数列,求a3的最大值.
分析:(1)由已知可求a2,b2,结合已知a1=b2,可得等差数列{an}的公差d,可求an=,然后由b3=a4,可求{bn}的公比q,进而可求bn
(2)设等差数列{an}的公差为d,等比数列{bn}的公比为q,由已知可得(a1+b1)•(a3+b3)=(a2+b2)2=64.分别利用等差数列及等比数列的通项表示已知项可得关于d,q的方程,解方程可求d,即可求解
解答:解:(1)由a1+a2+a3=15,b1b2b3=27.
可得a2=5,b2=3,
所以a1=b2=3,从而等差数列{an}的公差d=2,
所以an=2n+1,从而b3=a4=9,{bn}的公比q=3
所以bn=3n-1. …(3分)
(2)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
则a1=5-d,b1=
3
q
,a3=5+d,b3=3q.
因为a1+b1,a2+b2,a3+b3成等比数列,所以(a1+b1)•(a3+b3)=(a2+b2)2=64
a1+b1=m
a3+b3=n
,m,n∈N*,mn=64,
5-d+
3
q
=m
5+d+3q=n
,整理得,d2+(m-n)d+5(m+n)-80=0.
解得d=
n-m+
(m+n-10)2-36
2
(舍去负根).
∵a3=5+d,
∴要使得a3最大,即需要d最大,即n-m及(m+n-10)2取最大值.
∵m,n∈N*,mn=64,
∴当且仅当n=64且m=1时,n-m及(m+n-10)2取最大值.
从而最大的d=
63+7
61
2

所以,最大的a3=
73+7
61
2
…(16分)
点评:本题主要考查了等差数列、等比数列的性质及通项公式的应用,等比数列的性质的综合应用及一定的逻辑推理运算的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,则这个数列的前n项和Sn的计算公式为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果?n∈N*,都有an•an+1•an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=3,公积为27,则a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“等积数列”:在一个数列中,如果每一个项与它的后一项的积都为同一个常数,那末这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,Tn为数列{an}前n项的积,则T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中数学 来源: 题型:

我们对数列作如下定义,如果?n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为6,则a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.
(1)类比等差数列的定义给出“等和数列”的定义;
(2)已知数列{an}是等和数列,且a1=2,公和为5,求 a18的值,并猜出这个数列的通项公式(不要求证明).

查看答案和解析>>

同步练习册答案