精英家教网 > 高中数学 > 题目详情
奇函数f (x)在区间[-b,-a]上单调递减,且f (x)>0,(0<a<b),那么|f (x)|在区间[a,b]上是( )
A.单调递增
B.单调递减
C.不增也不减
D.无法判断
【答案】分析:本题可以利用数形结合的思想,画出函数f(x)的图象,再利用函数图象的变化性质作出函数|f (x)|的图象,利用图象解答可得.
解答:解:如图,作出f(x)的图象(左图),
按照图象的变换性质,
再作出函数|f (x)|的图象(右图),
可以得到|f (x)|在区间[a,b]上是增函数.
故选:A.
点评:本题考查抽象函数以及函数图象的知识,数形结合的思想方法的考查,本题在画图象时,要满足题目所给的已知条件,否则容易出现错误.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•奉贤区一模)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝坻区一模)奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)=
-15
-15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)若f(x)是R上的奇函数,且f(x)在[0,+∞)上单调递增,则下列结论:
①y=|f(x)|是偶函数;
②对任意的x∈R都有f(-x)+|f(x)|=0;
③y=f(-x)在(-∞,0]上单调递增;
④y=f(x)f(-x)在(-∞,0]上单调递增.
其中正确结论的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)函数f(x)=lg(
4x2+b
+2x
),其中b>0
(1)若f(x)是奇函数,求b的值;
(2)在(1)的条件下,判别函数y=f(x)的图象是否存在两点A,B,使得直线AB平行于x轴,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青浦区一模)定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=
2x4x+1

(1)判断并证明f(x)在(0,2)上的单调性,并求f(x)在[-2,2]上的解析式;
(2)当λ为何值时,关于x的方程f(x)=λ在[2,6]上有实数解?

查看答案和解析>>

同步练习册答案