精英家教网 > 高中数学 > 题目详情

已知椭圆C:=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.

(1)求椭圆C的方程;

(2)若直线l1的斜率为-1,求△PMN的面积;

(3)若线段MN的中点在x轴上,求直线MN的方程.

 

(1);(2)2;(3)

【解析】

试题分析:(1)根据题意可得,且,加之的关系,可求得; (2)由于直线的斜率已确定,则可由其与椭圆方程联立方程组,求出点M的坐标,因两直线垂直,故当时,用代替,进而求出点N的坐标,得,再由两点间的距离公式求出: ,即可求出的面积;(3)观察本题条件可用设而不求的方法处理此题,即设出点,两点均在椭圆上得:,观察此两式的结构特征是一致的,则将两式相减得, 由题中条件线段的中点在x轴上,所以,从而可得,此式表明两点横坐标的关系:可能相等;可能互为相反数,分两种情况分类讨论:当时,再利用,可转化为,进一步确定出两点的坐标,即可求出直线的方程为;同理当,求出直线的方程为

试题解析:(1)由条件得,且,所以,解得

所以椭圆方程为:. 3分

(2)设方程为

联立,消去

因为,解得.5分

时,用代替,得. 7分

代入,得

因为,所以

所以的面积为. 9分

(3)设,则

两式相减得

因为线段的中点在x轴上,所以,从而可得.12分

,则

因为,所以,得

又因为,所以解得,所以

所以直线的方程为. 14分

,则

因为,所以,得

又因为,所以解得

经检验:满足条件,不满足条件.

综上,直线的方程为. 16分

考点:1.椭圆方程;2.直线与椭圆的位置关系

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年江苏省南通市高三第二次调研测试数学试卷(解析版) 题型:解答题

在四棱锥P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中点.

求证:(1)CE∥平面PAD;

(2)平面PBC⊥平面PAB.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省南通市高三年级第三次模拟考试理科数学试卷(解析版) 题型:填空题

已知集合,则

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省南通市高三年级第三次模拟考试文科数学试卷(解析版) 题型:填空题

平面截半径为2的球所得的截面圆的面积为,则球心到平面的距离为 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省南京市高三年级第三次模拟考试数学试卷(解析版) 题型:解答题

在平面直角坐标系xOy中,已知M是椭圆=1上在第一象限的点,A(2,0),B(0,2)

是椭圆两个顶点,求四边形OAMB的面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省南京市高三年级第三次模拟考试数学试卷(解析版) 题型:填空题

在平面直角坐标系xOy中,圆C的方程为(x-1)2+y2=4,P为圆C上一点.若存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60?,则圆M的方程为 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省南京市高三年级第三次模拟考试数学试卷(解析版) 题型:填空题

已知抛物线y2=2px过点M(2,2),则点M到抛物线焦点的距离为 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省韶关市高三4月高考模拟(二模)理科数学试卷(解析版) 题型:填空题

已知向量,,且,则________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省肇庆市高三3月第一次模拟理科数学试卷(解析版) 题型:填空题

已知等比数列满足,则 .

 

查看答案和解析>>

同步练习册答案