已知椭圆C:=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.
(1)求椭圆C的方程;
(2)若直线l1的斜率为-1,求△PMN的面积;
(3)若线段MN的中点在x轴上,求直线MN的方程.
(1);(2)2;(3)或.
【解析】
试题分析:(1)根据题意可得,且,加之的关系,可求得; (2)由于直线的斜率已确定,则可由其与椭圆方程联立方程组,求出点M的坐标,因两直线垂直,故当时,用代替,进而求出点N的坐标,得,再由两点间的距离公式求出: ,即可求出的面积;(3)观察本题条件可用设而不求的方法处理此题,即设出点,两点均在椭圆上得:,观察此两式的结构特征是一致的,则将两式相减得, 由题中条件线段的中点在x轴上,所以,从而可得,此式表明两点横坐标的关系:可能相等;可能互为相反数,分两种情况分类讨论:当时,再利用,可转化为,进一步确定出两点的坐标或,即可求出直线的方程为;同理当,求出直线的方程为.
试题解析:(1)由条件得,且,所以,解得.
所以椭圆方程为:. 3分
(2)设方程为,
联立,消去得.
因为,解得.5分
当时,用代替,得. 7分
将代入,得.
因为,所以,
所以的面积为. 9分
(3)设,则
两式相减得,
因为线段的中点在x轴上,所以,从而可得.12分
若,则.
因为,所以,得.
又因为,所以解得,所以或.
所以直线的方程为. 14分
若,则,
因为,所以,得.
又因为,所以解得,
经检验:满足条件,不满足条件.
综上,直线的方程为或. 16分
考点:1.椭圆方程;2.直线与椭圆的位置关系
科目:高中数学 来源:2013-2014学年江苏省南通市高三第二次调研测试数学试卷(解析版) 题型:解答题
在四棱锥P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中点.
求证:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省南通市高三年级第三次模拟考试文科数学试卷(解析版) 题型:填空题
平面截半径为2的球所得的截面圆的面积为,则球心到平面的距离为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省南京市高三年级第三次模拟考试数学试卷(解析版) 题型:解答题
在平面直角坐标系xOy中,已知M是椭圆=1上在第一象限的点,A(2,0),B(0,2)
是椭圆两个顶点,求四边形OAMB的面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省南京市高三年级第三次模拟考试数学试卷(解析版) 题型:填空题
在平面直角坐标系xOy中,圆C的方程为(x-1)2+y2=4,P为圆C上一点.若存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60?,则圆M的方程为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省南京市高三年级第三次模拟考试数学试卷(解析版) 题型:填空题
已知抛物线y2=2px过点M(2,2),则点M到抛物线焦点的距离为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com