精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)当时,求函数的单调区间及所有零点;

(2)设为函数图象上的三个不同点,且

.问:是否存在实数,使得函数在点处的切线与直线平行?若存在,求出所有满足条件的实数的值;若不存在,请说明理由.

【答案】(1)函数的单调递增区间是,零点是;(2)存在,且.

【解析】

试题分析:(1)定义域为时,求导得,由于没办法画图导函数图象,所以再次求导得,故一阶导数在单调递减,在单调递增,且,所以原函数在定义域上为增函数,且是唯一零点;(2)化简,由此求得处切线的斜率,利用两点坐标,求出直线的斜率,两者相等,化简后按讨论后可知符合题意.

试题解析:

解:(1)当时,

,即

从而,上单调递增,在上单调递减,则,即恒成立,

上单调递增,无单调递减区间,又,则0为唯一零点.

(2)由题意知

直线的斜率,则有:

,即

时,式恒成立,满足条件;

时,式得

,不妨设,则式得

由(1)问可知,方程上无零点.

综上,满足条件的实数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;设有一个回归方程,变量增加一个单位时,平均增加5个单位;线性回归方程必过在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是(

A.0 B.1 C. 2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数在其定义域内有两个不同的极值点.

(1)求实数的取值范围;

(2)设两个极值点分别为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;

(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,

分别为的中点.

(I)求证:平面

(II)求证:平面平面

(III)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线,动点到点的距离等于它到直线的距离.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线.

)求圆的标准方程;

)设直线经过点,且与圆相交所得弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有穷数列:……的各项均为正数,且满足条件:

.

(1)若,求出这个数列;

(2)若,求的所有取值的集合;

(3)若是偶数,求的最大值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中有高一新生500名,分成水平相同的两类教学实验,为对比教学效果,现用分层抽样的方法从两类学生中分别抽取了40人,60人进行测试

1)求该学校高一新生两类学生各多少人?

2)经过测试,得到以下三个数据图表:

175分以上两类参加测试学生成绩的茎叶图

2100名测试学生成绩的频率分布直方图

下图表格:100名学生成绩分布表:

先填写频率分布表中的六个空格,然后将频率分布直方图(图2)补充完整;

该学校拟定从参加考试的79分以上(含79分)的类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.

查看答案和解析>>

同步练习册答案