精英家教网 > 高中数学 > 题目详情
11.函数$y=2sin(3x-\frac{π}{3})$的最小正周期为$\frac{2π}{3}$.

分析 根据函数y=Asin(ωx+φ)的周期等于 $\frac{2π}{ω}$,得出结论.

解答 解:函数$y=2sin(3x-\frac{π}{3})$的最小正周期为$\frac{2π}{3}$,
故答案为:$\frac{2π}{3}$.

点评 本题主要考查三角函数的周期性及其求法,利用了y=Asin(ωx+φ)的周期等于 $\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在正方体ABCD-A1B1C1D1中,CD的中点为M,AA1的中点为N,则异面直线C1M与BN所成角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=aln(x2+1)+bx存在两个极值点x1,x2
(1)求证:|x1+x2|>2;
(2)若实数λ满足等式f(x1)+f(x2)+a+λb=0,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=sin2(x+$\frac{π}{4}$)-sin2(x-$\frac{π}{4}$)是(  )
A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数
C.最小正周期为π的偶函数D.最小正周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设正项等比数列{bn}的前n项和为Sn,b3=4,S3=7,数列{an}满足an+1-an=n+1(n∈N*),且a1=b1
(Ⅰ)求数列{an}的通项公式
(Ⅱ)求数列{$\frac{1}{{a}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在棱长为2的正方体ABCD-A1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).
(1)若$λ=\frac{1}{2}$,求AP与AQ所成角的余弦值;
(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.化简:$\frac{{2sin({π-α})+sin2α}}{{2{{cos}^2}\frac{α}{2}}}$=2sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2x3-ax2+1.
(1)当a=4时,求函数f(x)的极大值;
(2)若函数f(x)在R上有且仅有两个零点,求实数a的值;
(3)求证:$\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+…+\frac{1}{n^3}<\frac{1}{3}-\frac{1}{2n+1}({n∈N且n≥2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x<2},B={y|y=2x-1,x∈A},则A∩B=(  )
A.(-∞,3)B.[2,3)C.(-∞,2)D.(-1,2)

查看答案和解析>>

同步练习册答案