精英家教网 > 高中数学 > 题目详情
(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求
(3)求函数y=的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:的值.
【答案】分析:(1) 把(x-y)看做一个整体,整式即:(x-y)2+2(x-y)-3
(2)应用特殊角的三角函数值.
(3)分母不为0,对数的真数大于0.
(4)先求出圆锥的高,代入体积公式计算.
(5)使用分数指数幂的运算法则化简每一项,然后合并同类项.
解答:解:(1)原式=(x-y)2+2(x-y)-3=(x-y-1)(x-y+3)
(2)原式=-0+1-=
(3)∵25-5x>0,且x+1≠0.∴x<2且x≠-1,∴所求定义域为:(-∞,-1)∪(-1,2).
(4)
(5)原式=10•(-2 )-+30•
=10-20-10+30
=-20+30•=-20+
点评:(1)体现整体的数学思想.
(2)记住特殊角的三角函数值.
(3)分式的分母不为0,对数的真数大于0.
(4)直接使用圆锥的体积公式.
(5)分数指数幂的运算法则的使用.本题的最后一项可能不对.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求sin30°-tan0°+ctg
π
4
-cos2
6
的值

(3)求函数y=
lg(25-5x)
x+1
的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:10(2+
5
)-1-(
1
500
)-
1
2
+30(
125
9
)
1
2
(
5
3
)
1
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
(1)α,β表示平面,a,b,c表示直线,点M;若a?α,b?β,α∩β=c,a∩b=M,则M∈c;
(2)平面内有两个定点F1(0,3),F2(0-3)和一动点M,若||MF1|-|MF2||=2a(a>0)是定值,则点M的轨迹是双曲线;
(3)在复数范围内分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)

(4)抛物线y2=12x上有一点P到其焦点的距离为6,则其坐标为P(3,±6).
以上命题中所有正确的命题序号为
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求数学公式
(3)求函数y=数学公式的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:数学公式的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求sin30°-tan0°+ctg
π
4
-cos2
6
的值

(3)求函数y=
lg(25-5x)
x+1
的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:10(2+
5
)-1-(
1
500
)-
1
2
+30(
125
9
)
1
2
(
5
3
)
1
2
的值.

查看答案和解析>>

同步练习册答案