精英家教网 > 高中数学 > 题目详情

如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.

(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.

(1) (2)

解析试题分析:解法一:(1)取BC中点H,连结FH,EH,设正方体棱长为2.
∵F为BCC1B1中心,E为AB中点.
∴FH⊥平面ABCD,FH=1,EH=
∴∠FEH为直线EF与平面ABCD所成角,且FH⊥EH.
∴tan∠FEH===.……6分
(2)取A1C中点O,连接OF,OA,则OF∥AE,且OF=AE.
∴四边形AEFO为平行四边形.∴AO∥EF.
∴∠AOA1为异面直线A1C与EF所成角.
∵A1A=2,AO=A1O=
∴△AOA1中,由余弦定理得cos∠A1OA=.……12分
解法二:设正方体棱长为2,以B为原点,BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系.则B(0,0,0),B1(0,0,2),E(0,1,0),F(1,0,1),
C(2,0,0),A1(0,2,2).
(1)=(1,-1,1),=(0,0,2),且为平面ABCD的法向量.
∴cos<>=
设直线EF与平面ABCD所成角大小为θ.
∴sinθ=,从而tanθ=.……6分
(2)∵=(2,-2,-2).∴cos<>=
∴异面直线A1C与EF所成角的余弦值为.……12分
考点:异面直线所成的角,线面角
点评:解决的关键是根据异面直线所成角的定义, 以及线面角的概念,结合向量法来得到,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在矩形ABCD中,AB=4,AD=2,EAB的中点,现将△ ADE沿直线DE翻折成△ADE,使平面ADE⊥平面BCDEF为线段AD的中点.

(1)求证:EF//平面ABC
(2)求直线AB与平面ADE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体棱长为1,的中点,的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.

(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求证:BFAD;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的所有棱长都为2,中点,平面

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=
求AB的长.

查看答案和解析>>

同步练习册答案