精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线E的焦点重合,斜率为k的直线l交抛物线EAB两点,交椭圆CD两点.

(1)求椭圆的方程;

(2)直线l经过点,设点,且的面积为,求k的值;

(3)若直线l过点,设直线的斜率分别为,且成等差数列,求直线l的方程.

【答案】(1)

(2)

(3)

【解析】

1)由题知得到,解方程组即可.

2)设直线,由得:.利用弦长公式和点到直线的距离公式即可得到,解方程即可.

3)设直线,带入椭圆方程得到.根据韦达定理和等差中项的性质得到,解方程即可求出直线方程.

(1)设椭圆的方程为

由题设得,∴.

∴椭圆的方程是.

(2)设直线,设

得:.

.

与抛物线有两个交点,

.

的距离

,所以.

,故.

(3)设直线,设

消去得:.

因为在椭圆内部,所以与椭圆恒有两个交点,

所以.

成等差数列得.

.

所以解得:.

所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱中,平面,点分别在棱上,且.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:且对一切,均有

1)求证:数列为等差数列,并求数列的通项公式;

2)求数列的前项和

3)设,记数列的前项和为,求正整数,使得对任意,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCDEF分别是ABPD的中点,且PA=AD

(Ⅰ)求证:AF∥平面PEC

(Ⅱ)求证:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为整数,其前n项和为.规定:若数列满足前r项依次成公差为1的等差数列,从第项起往后依次成公比为2的等比数列,则称数列为“r关联数列”.

(1)若数列为“6关联数列”,求数列的通项公式;

(2)在(1)的条件下,求出,并证明:对任意

3)若数列为“6关联数列”,当,之间插入n个数,使这个数组成一个公差为的等差数列,求,并探究在数列中是否存在三项其中mkp成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.

I)求椭圆的方程和其准圆方程;

(II )P是椭圆C准圆上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其准圆于点MN.

1)当P准圆轴正半轴的交点时,求的方程;

2)求证:|MN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属不合格的零件,其中分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若一个零件的尺寸是,试判断该零件是否属于不合格的零件;

2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,真命题是(  )

A.和两条异面直线都相交的两条直线是异面直线

B.和两条异面直线都相交于不同点的两条直线是异面直线

C.和两条异面直线都垂直的直线是异面直线的公垂线

D.是异面直线,是异面直线,则是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxafx)是fx)的导函数,若关于x的方程fx0有两个不等的根,则实数a的取值范围是_____

查看答案和解析>>

同步练习册答案