ÒÑÖªº¯Êýf£¨x£©ÔÚÆ䶨ÒåÓòÉÏÂú×ãxf£¨x£©+2af£¨x£©=x+a-1£¨a£¾0£©£®
£¨1£©º¯Êýy=f£¨x£©µÄͼÏóÊÇ·ñÊÇÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÖ¸³öÆä¶Ô³ÆÖÐÐÄ£¨²»Ö¤Ã÷£©£»
£¨2£©µ±f(x)¡Ê[
1
2
£¬
4
5
]
ʱ£¬ÇóxµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôf£¨0£©=0£¬ÊýÁÐ{an}Âú×ãa1=1£¬ÄÇô£º
¢ÙÈô0£¼an+1¡Üf£¨an£©£¬ÕýÕûÊýNÂú×ãn£¾Nʱ£¬¶ÔËùÓÐÊʺÏÉÏÊöÌõ¼þµÄÊýÁÐ{an}£¬an£¼
1
10
ºã³ÉÁ¢£¬Çó×îСµÄN£»
¢ÚÈôan+1=f£¨an£©£¬ÇóÖ¤£ºa1a2+a2a3+a3a4+¡­+anan+1£¼
3
7
£®
·ÖÎö£º£¨1£©ÒÀÌâÒâÓУ¨x+2a£©f£¨x£©=x+a-1£®Èôx=-2a£¬µÃa=-1£¬ÕâÓëa£¾0ì¶Ü£¬¹Êx¡Ù-2a£¬ËùÒÔf(x)=
x+a-1
x+2a
=1-
a+1
x+2a
(x¡Ù-2a)
£¬ÓÉ´ËÖªy=f£¨x£©µÄͼÏóÊÇÖÐÐĶԳÆͼÐΣ¬²¢ÄÜÇó³öÆä¶Ô³ÆÖÐÐÄ£®
£¨2£©ÓÉf(x)¡Ê[
1
2
£¬
4
5
]
£¬Öª
x-2
x+2a
¡Ý0
x-3a-5
x+2a
¡Ü0
£¬ÓÉa£¾0£¬ÄÜÇó³öxµÄÈ¡Öµ·¶Î§£®
£¨3£©¢ÙÓÉf£¨0£©=0µÃa=1£¬¹Êf(x)=
x
x+2
£®ÓÉ0£¼an+1¡Ü
an
an+2
£¬µÃ
1
an+1
+1¡Ý2(
1
an
+1)
£®Áîbn=
1
an
+1
£¬Ôòbn+1¡Ý2bn£¬ÓÉ´ËÄÜÇóÍƵ¼³öÂú×ãÌâÉèÒªÇóµÄ×îСÕýÕûÊý£®
¢ÚÓÉan=
1
2n-1
£¬Öªanan+1=
1
(2n-1)•(2n+1-1)
£¬a1a2=
1
3
£¼
3
7
£¬a1a2+a2a3=
1
3
+
1
21
=
16
42
£¼
3
7
£¬¹Êµ±n=1£¬2ʱ£¬²»µÈʽ³ÉÁ¢£®µ±n¡Ý2ʱ£¬ÓÉ
anan+1
an-1an
=
2n-1-1
2n+1-2
=
1
2
2n-1-1
2n-1
£¼
1
2
£¬Äܹ»Ö¤Ã÷a1a2+a2a3+a3a4+¡­+anan+1£¼
3
7
£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒâÓУ¨x+2a£©f£¨x£©=x+a-1£®
Èôx=-2a£¬Ôòx+a-1=-a-1=0£¬µÃa=-1£¬ÕâÓëa£¾0ì¶Ü£¬
¡àx¡Ù-2a£¬
¡àf(x)=
x+a-1
x+2a
=1-
a+1
x+2a
(x¡Ù-2a)
£¬
¹Êy=f£¨x£©µÄͼÏóÊÇÖÐÐĶԳÆͼÐΣ¬Æä¶Ô³ÆÖÐÐÄΪµã£¨-2a£¬1£©£®
£¨2£©¡ßf(x)¡Ê[
1
2
£¬
4
5
]
£¬
¡à
x+a-1
x+2a
¡Ý
1
2
x+a-1
x+2a
¡Ü
4
5
¼´
x-2
x+2a
¡Ý0
x-3a-5
x+2a
¡Ü0

ÓÖ¡ßa£¾0£¬¡à
x£¼-2a£¬»òx¡Ý2
-2a£¼x¡Ü3a+5

µÃx¡Ê[2£¬3a+5]£®
£¨3£©¢ÙÓÉf£¨0£©=0µÃa=1£¬
¡àf(x)=
x
x+2
£®
ÓÉ0£¼an+1¡Ü
an
an+2
µÃ
1
an+1
¡Ý2¡Á
1
an
+1
£¬
¼´
1
an+1
+1¡Ý2(
1
an
+1)
£®
Áîbn=
1
an
+1
£¬Ôòbn+1¡Ý2bn£¬
ÓÖ¡ßan£¾0£¬¡àbn£¾0£¬¡à
bn+1
bn
¡Ý2
£®
¡ßa1=1£¬¡àb1=2£¬
¡àµ±n¡Ý2ʱ£¬bn=b1¡Á
b2
b1
¡Á
b3
b2
¡Á¡­¡Á
bn
bn-1
¡Ý
2¡Á2¡Á2¡Á¡­¡Á2
n¸ö
=2n
£®
ÓÖ¡ßb1=2Ò²·ûºÏbn¡Ý2n£¬
¡àbn¡Ý2n£¨n¡ÊN*£©£¬¼´
1
an
+1¡Ý2n
£¬
µÃan¡Ü
1
2n-1
(n¡ÊN*)
£®
Ҫʹan£¼
1
10
ºã³ÉÁ¢£¬
Ö»Ðè
1
2n-1
£¼
1
10
£¬¼´2n£¾11£¬
¡àn£¾3£®¹ÊÂú×ãÌâÉèÒªÇóµÄ×îСÕýÕûÊýN=3£®
¢ÚÓÉ¢ÙÖªan=
1
2n-1
£¬
¡àanan+1=
1
(2n-1)•(2n+1-1)
£¬
a1a2=
1
3
£¼
3
7
£¬
a1a2+a2a3=
1
3
+
1
21
=
16
42
£¼
3
7
£¬
¡àµ±n=1£¬2ʱ£¬²»µÈʽ³ÉÁ¢£®
µ±n¡Ý2ʱ£¬
¡ß
anan+1
an-1an
=
2n-1-1
2n+1-1
£¼
1
2
£¬
¡àanan+1£¼
1
2
an-1an£¼(
1
2
)2an-2an-1
£¼¡­£¼(
1
2
)n-2a2a3=
1
21
•(
1
2
)n-2
£¬
¡àa1a2+a2a3+a3a4+¡­+anan+1¡Ü
1
3
+
1
21
(
1
20
+
1
2
+
1
22
+¡­+
1
2n-2
)

=
1
3
+
2
21
(1-
1
2n-1
)£¼
1
3
+
2
21
=
18
42
=
3
7
£®
µãÆÀ£º±¾Ì⿼²éÊýÁкͲ»µÈʽµÄ×ÛºÏÓ¦Ó㬿¼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶Ô¼ÆËãÄÜÁ¦µÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©ÔÚÆ䶨ÒåÓòMÄÚΪ¼õº¯Êý£¬ÇÒf£¨x£©£¾0£¬Ö¤Ã÷g£¨x£©=1+
2f(x)
ÔÚMÄÚΪÔöº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©ÔÚÆ䶨ÒåÓòÉÏÂú×㣺xf£¨x£©+2af£¨x£©=x+a-1£¬a£¾0£®
¢Ùº¯Êýy=f£¨x£©µÄͼÏóÊÇ·ñÊÇÖÐѧ¶Ô³ÆͼÐΣ¿ÈôÊÇ£¬ÇëÖ¸³öÆä¶Ô³ÆÖÐÐÄ£¨²»Ö¤Ã÷£©£»
¢Úµ±f£¨x£©¡Ê[
1
2
£¬
4
5
]
ʱ£¬ÇóxµÄÈ¡Öµ·¶Î§£»
¢ÛÈôf£¨0£©=0£¬ÊýÁÐ{an}Âú×ãa1=1£¬ÄÇôÈô0£¼an+1¡Üf£¨an£©ÕýÕûÊýNÂú×ãn£¾Nʱ£¬¶ÔËùÓÐÊʺÏÉÏÊöÌõ¼þµÄÊýÁÐ{an}£¬an£¼
1
10
ºã³ÉÁ¢£¬Çó×îСµÄN£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf£¨x£©ÔÚÆ䶨ÒåÓòMÄÚΪ¼õº¯Êý£¬ÇÒf£¨x£©£¾0£¬Ö¤Ã÷g£¨x£©=1+Êýѧ¹«Ê½ÔÚMÄÚΪÔöº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄêËÄ´¨Ê¡ÄϳäÒ»ÖиßÈý£¨Ï£©6ÔÂÊÊÓ¦ÐÔ¿¼ÊÔÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf£¨x£©ÔÚÆ䶨ÒåÓòÉÏÂú×ãxf£¨x£©+2af£¨x£©=x+a-1£¨a£¾0£©£®
£¨1£©º¯Êýy=f£¨x£©µÄͼÏóÊÇ·ñÊÇÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÖ¸³öÆä¶Ô³ÆÖÐÐÄ£¨²»Ö¤Ã÷£©£»
£¨2£©µ±Ê±£¬ÇóxµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôf£¨0£©=0£¬ÊýÁÐ{an}Âú×ãa1=1£¬ÄÇô£º
¢ÙÈô0£¼an+1¡Üf£¨an£©£¬ÕýÕûÊýNÂú×ãn£¾Nʱ£¬¶ÔËùÓÐÊʺÏÉÏÊöÌõ¼þµÄÊýÁÐ{an}£¬ºã³ÉÁ¢£¬Çó×îСµÄN£»
¢ÚÈôan+1=f£¨an£©£¬ÇóÖ¤£º£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸