精英家教网 > 高中数学 > 题目详情

一个多面体的直观图、正(主)视图、侧(左)视图如图1和图2所示,其中正(主)视图、侧(左)视图均为边长为的正方形.

(Ⅰ)请在图2指定的位置画出多面体的俯视图;

(Ⅱ)若多面体底面对角线AC、BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;

(Ⅲ)求该多面体的表面积.

 

 

 

 

  

 

 

【答案】

解:(Ⅰ) 略

(Ⅱ)证明:如图,连结AC、BD,交于O点.

∵E为AA1的中点,O为AC的中点.

∴在△AA1C中,OE为△AA1C的中位线,

∴OE∥A1C.

∵OE⊄平面A1C1C,A1C⊂平面A1C1C,

∴OE∥平面A1C1C.

(Ⅲ)多面体表面共包括10个面,SABCD=a2

S,S=S=S=S

S=S=S=S

所以该多面体的表面积S=a2+4×+4×=5a2.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网一个多面体的直观图和三视图如图所示,E,F分别为PB,PC中点.
(1)证明:EF∥平面PAD;
(2)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点
(1)求证:GN⊥AC;
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网一个多面体的直观图,正(主)视图,侧(左)视图如下所示,其中正(主)视图、侧(左)视图为边长为a的正方形.
(1)请在指定的框内画出多面体的俯视图;
(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;
(3)求该多面体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图如图所示(其中M,N分别为AF,BC的中点)求多面体A-CDEF的体积.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图及三视图如图所示:(其中M、N、P、Q分别是FC、AF、DC、AD的中点)
(1)直线DE与直线BF的位置关系是什么、夹角大小为多少?
(2)判断并证明直线MN与直线PQ的位置关系;
(3)求三棱锥D-ABF的体积.

查看答案和解析>>

同步练习册答案