精英家教网 > 高中数学 > 题目详情
6.若存在斜率且过点P(-1,-$\frac{b}{a}$)的直线l与双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$有且仅有一个公共点,且这个公共点恰是双曲线的左顶点,则双曲线的实轴长等于(  )
A.2B.4C.1或2D.2或4

分析 双曲线的左顶点为(-a,0),由题意,$\frac{-\frac{b}{a}-0}{-1+a}$=-$\frac{b}{a}$,求出a,即可求出双曲线的实轴长.

解答 解:双曲线的左顶点为(-a,0),则
由题意,$\frac{-\frac{b}{a}-0}{-1+a}$=-$\frac{b}{a}$,
∴a=2,
∴2a=4,
∴双曲线的实轴长等于4,
故选:B.

点评 本题考查双曲线的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知抛物线的表达式是y=ax2+(1-a)x+1-2a(a为常数且不为0),无论a为何值,上述抛物线始终经过x轴上的一定点A与第一象限内的另一定点B.
(1)如图1,当抛物线与x轴只有一个公共点时,求a的值;
(2)请写出A,B两点的坐标:A(-1,0),B(2,3);
(3)如图2,当a<0时,若上述抛物线顶点是D,与x轴的另一交点为点C,且点A,B,C,D中没有两个点相互重合.
①△ABC能否是直角三角形,为什么?
②若使得△ABD是直角三角形,请你求出a的值(求出1个a的值即可).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=2px(p>0)的顶点关于直线l:y=$\frac{1}{2}$x+$\frac{5}{4}$的对称点在抛物线C的准线l1上.
(1)求抛物线C的方程;
(2)设直线l2:3x-4y+7=0,在抛物线C求一点P,使得P到直线l1和l2的距离之和最小,并求最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点M(-5,0),N(0,5),P为椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1上一动点,则S△MNP的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过A(3,5)且与圆C:x2+y2-4x-4y+7=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,将△ABD沿BD折起到△PBD的位置,若二面角P-BD-C的大小为$\frac{2π}{3}$,则三棱锥P-BCD的外接球体积为(  )
A.$\frac{4}{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{7\sqrt{7}}{6}$πD.$\frac{7\sqrt{7}}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线a与直线b无公共点,则(  )
A.a∥bB.a,b异面C.a∥b或a,b异面D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在等差数列{an}中,设a3=5,S3=9,在等比数列{bn}中,设b2=4与b5=32,解答下列问题:
(1)求an
(2)求bn
(3)若cn=an+bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面α内的三点A(0,0,1)、B(0,1,0)、C(1,0,0),平面β的一个法向量为(-1,-1,-1),且β与α不重合(  )
A.α∥βB.α⊥β
C.α与β相交但不垂直D.以上都不对

查看答案和解析>>

同步练习册答案