精英家教网 > 高中数学 > 题目详情
在直角坐标系xoy中,以原点O为极点,以x轴正半轴为极轴,与直角坐标系xoy取相同的长度单位,建立极坐标系,设曲线C参数方程为
x=
3
cosθ
y=sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的最大距离,并求出这个点的坐标.
分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系,消去θ可得曲线C的普通方程;
(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值.
解答:解:(1)由ρcos(θ-
π
4
)=2
2

得ρ(cosθ+sinθ)=4,
∴l:x+y-4=0,
x=
3
cosθ
y=sinθ
,(θ为参数),
∴消去参数得
x2
3
+y2=1

∴曲线C的普通方程为
x2
3
+y2=1
和直线l的直角坐标方程为x+y-4=0;
(2)在C:
x=
3
cosθ
y=sinθ
上任取一点(
3
cosθ,sinθ),
则点P到直线l的距离为d=
|
3
cosθ+sinθ-4|
2
=
|2sin(θ+
π
3
)-4|
2
≤3
2

∴当sin(θ+
π
3
)=-1时,dmax=3
2

此时这个点的坐标为(-
3
2
,-
1
2
).
点评:本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案