精英家教网 > 高中数学 > 题目详情

【题目】已知点是抛物线的焦点,是抛物线在第一象限内的点,且

(I) 点的坐标;

(II)为圆心的动圆与轴分别交于两点,延长分别交抛物线两点;

①求直线的斜率;

②延长轴于点,若,求的值.

【答案】(I) (II)①

【解析】

(I)由抛物线的定义,可求出点的横坐标,代入方程中,求出点的纵坐标;

(II) ①设直线SA的斜率为k,可设出SA直线方程,与抛物线方程联立,求出点M的坐标,由题意可知:SA=SB,因此可求出直线SB的斜率,可设出直线SB的方程,同理,可以求出N点的坐标,代入斜率公式,求出直线的斜率;

②设出E点坐标,由,可得到,从而求出斜率k,求出A点坐标,同理求出B点坐标,利用余弦定理求出的值,也就求出的值。

如下图所示:

(I)设,抛物线的焦点为,准线方程为由抛物线的定义可知,所以点的坐标为(1,1);

(II) ①设直线SA的直线方程为:与抛物线方程联立:

,设

所以,因为以为圆心的动圆与轴分别交于两点,所以SA=SB,因此直线SB的斜率为-k,同理可求出,

②设 ,

则直线SA的方程为A点坐标为,同理B点坐标为,

,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,平面 为等腰直角三角形,,的中点,的中点.

(1)求异面直线所成角的余弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信红包已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内20名同学今年春节期间抢到红包金额(元)如下(四舍五入取整数):

102 52 41 121 72

162 50 22 158 46

43 136 95 192 59

99 22 68 98 79

对这20个数据进行分组,各组的频数如下:

Ⅰ)写出mn的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;

C组红包金额的平均数与方差分别为E组红包金额的平均数与方差分别为,试分别比较的大小;(只需写出结论)

Ⅲ)从AE两组所有数据中任取2个,求这2个数据差的绝对值大于100的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)解关于的不等式

(2)若不等式的解集为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究发现,北京 PM 2.5 的重要来源有土壤尘、燃煤、生物质燃烧、汽车尾气与垃圾焚烧、工业污染和二次无机气溶胶,其中燃煤的平均贡献占比约为 18%.为实现“节能减排”,还人民“碧水蓝天”,北京市推行“煤改电”工程,采用空气源热泵作为冬天供暖.进入冬季以来,该市居民用电量逐渐增加,为保证居民取暖,市供电部门对该市 100 户居民冬季(按 120 天计算)取暖用电量(单位:度)进行统计分析,得到居民冬季取暖用电量的频率分布直方图如图所示.

(1)求频率分布直方图中的值;

(2)从这 100 户居民中随机抽取 1 户进行深度调查,求这户居民冬季取暖用电量在[3300,3400]的概率;

(3)在用电量为[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四组居民中,用分层抽样的方法抽取 34 户居民进行调查,则应从用电量在[3200,3250)的居民中抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是( )

A. 0.9 B. 0.75 C. 0.8 D. 0.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)

已知数列{an}的前n项和为Sn,且a1=1Sn=n2ann∈N*.

1)试求出S1S2S3S4,并猜想Sn的表达式;

2)用数学纳法证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CDAB=4BC=CD=2AA=2,EE分别是棱ADAA的中点.

1)设F是棱AB的中点,证明:直线EE//平面FCC

2)证明:平面D1AC平面BB1C1C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,ABCD是正方形,BF平面ABCDDE平面ABCDBF=DE,点M为棱AE的中点.

1)求证:平面BMD平面EFC

2)若AB=1BF=2,求三棱锥A-CEF的体积.

查看答案和解析>>

同步练习册答案