精英家教网 > 高中数学 > 题目详情

已知函数为偶函数.
(1)求的值;
(2)若方程有且只有一个根,求实数的取值范围.

(1);(2) .

解析试题分析:(1)法一:根据为偶函数,将等式化简整理即可得到的值;法二:根据为偶函数,得到,从中求解即可得到,检验此时是否满足即可;(2)首先将方程化简:;由,进而可得,令 ,则*变为关于的方程只有一个正实数根,先考虑的情形是否符合,然后针对二次方程的根的分布分该方程有一正一负根、有两个相等的正根进行讨论求解,并保证即可,最后根据各种情况讨论的结果写出的取值范围的并集即可.
(1)法一:因为为偶函数,所以
,∴
,∴                6分
法二:因为为偶函数,所以,解得
此时
,所以.
(2)依题意知:
∴由
               8分
 ,则①变为,只需关于的方程只有一个正根即可满足题意
(1) 不合题意                    9分
(2)①式有一正一负根,则 经验证满足    11分
(3)若①式有两相等正根,则,此时
,则,此时方程无正根
舍去                       13分
,则,且
因此

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数的最小值为
⑴求函数的解析式;
⑵设,若上是减函数,求实数的取值范围;
⑶设函数,若此函数在定义域范围内不存在零点,求实数的取值范围.[

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(1)求的值;
(2)若方程有且只有一个根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设关于x函数 其中0
将f(x)的最小值m表示成a的函数m=g(a);
是否存在实数a,使f(x)>0在上恒成立?
是否存在实数a,使函数f(x) 在上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的解集;
(2)设函数,若对任意的都成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.

(1)求关于的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.
(1)求水面宽;
(2)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?


(3)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数满足,当时,
,且.
(1)求的值;
(2)当时,关于的方程有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

要制作一个如图的框架(单位:m),要求所围成的总面积为19.5(m2),其中ABCD是一个矩形,EFCD是一个等腰梯形,梯形高h=AB,tan∠FED=,设AB=xm,BC=ym.
 
(1)求y关于x的表达式;
(2)如何设计x、y的长度,才能使所用材料最少?

查看答案和解析>>

同步练习册答案