【题目】已知关于x的不等式ax2+(1﹣a)x﹣1>0
(1)当a=2时,求不等式的解集.
(2)当a>﹣1时.求不等式的解集.
【答案】
(1)解:原不等式即(x﹣1)(ax+1)>0,当a=2时,即(x﹣1)(2x+1)>0,
求得x<﹣ ,或x>1,故不等式的解集为{x|x<﹣ ,或x>1}
(2)解:二次项系数含有参数,因此对a在0点处分开讨论.
若a≠0,则原不等式ax2+(1﹣a)x﹣1>0等价于(x﹣1)(ax+1)>0.
其对应方程的根为﹣ 与1.
又因为a>﹣1,则①当a=0时,原不等式为x﹣1>0,
所以原不等式的解集为{x|x>1};
②当a>0时,﹣ <1,所以原不等式的解集为{x|x<﹣ ,或 x>1};
③当﹣1<a<0时,﹣ >1,所以原不等式的解集为{x|1<x<﹣ }
【解析】(1)当a=2时,不等式即即(x﹣1)(2x+1)>0,由此求得x的范围.(2)不等式即(x﹣1)(ax+1)>0,其对应方程的根为﹣ 与1,利用二次函数的性质分类讨论求得它的解集.
科目:高中数学 来源: 题型:
【题目】已知圆和点,动圆经过点且与圆相切,圆心的轨迹为曲线
(1)求曲线的方程;
(2)点是曲线与轴正半轴的交点,点在曲线上,若直线的斜率满足求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:(为参数).
(1)求曲线的直角坐标方程与曲线的普通方程;
(2)将曲线经过伸缩变换后得到曲线,若分别是曲线和曲线上的动点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=7,a5+a7=26.{an}的前n项和为Sn .
(1)求an及Sn;
(2)令bn=﹣ (n∈N*),求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速分成六段: , , , , , 后得到如图的频率分布直方图.
(I)某调查公司在采样中,用到的是什么抽样方法?
(II)求这40辆小型车辆车速的众数、中位数及平均数的估计值;
(III)若从车速在的车辆中任抽取2辆,求车速在的车辆至少有一辆的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天气预报说,在今后的三天中,每一天下雨的概率均为50%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用0,1,2,3,4表示下雨,用5,6,7,8,9表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为( )
A. 0.30 B. 0.35 C. 0.40 D. 0.50
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com