分析 (1)由sin(cosx)≥0得:0≤cosx≤1,解得x的范围,可得函数的定义域;
(2)由$\left\{\begin{array}{l}1-2cosx≥0\\ 2sinx-1>0\end{array}\right.$得:$\left\{\begin{array}{l}cosx≤\frac{1}{2}\\ sinx>\frac{1}{2}\end{array}\right.$,解得x的范围,可得函数的定义域;
解答 解:(1)由sin(cosx)≥0得:0≤cosx≤1,
故x∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],(k∈Z),
故函数y=$\sqrt{sin(cosx)}$的定义域为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],(k∈Z);
(2)由$\left\{\begin{array}{l}1-2cosx≥0\\ 2sinx-1>0\end{array}\right.$得:$\left\{\begin{array}{l}cosx≤\frac{1}{2}\\ sinx>\frac{1}{2}\end{array}\right.$,
解得:x∈[$\frac{π}{3}$+2kπ,$\frac{5π}{6}$+2kπ],(k∈Z),
故函数y=$\sqrt{1-2cosx}$+lg(2sinx-1)的定义域为[$\frac{π}{3}$+2kπ,$\frac{5π}{6}$+2kπ],(k∈Z).
点评 本题考查的知识点是函数的定义域,三角函数的图象和性质,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{6}{125}$ | B. | $\frac{2}{81}$ | C. | $\frac{24}{125}$ | D. | $\frac{8}{81}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | P(ξ=3) | B. | P(ξ≥2) | C. | P(ξ≤3) | D. | P(ξ=2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1)∪(1,+∞) | B. | (-∞,-1)∪(-1,+∞) | C. | (-∞,1),(1,+∞) | D. | (-∞,-1),(-1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com