精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列,等差数列满足,且的等比中项.

(1)求数列的通项公式;

(2)设,求数列的前项和.

【答案】(1);(2).

【解析】试题分析:(1)根据的等比中项列出关于公比 、公差的方程组,解方程组可得的值,从而可得数列的的通项公式;(2)由(1)可知,所以,对分奇数、偶数两种情况讨论,分别利用分组求和法,错位相减求和法,结合等差数列求和公式与等比数列求和公式求解即可.

试题解析:(1)设等比数列的公比为,等差数列的公差为

的等比中项可得:

,则:,解得

因为中各项均为正数,所以,进而.

.

(2)设

设数列的前项和为,数列的前项和为,

为偶数时,,

为奇数时, ,

①,

②,

-得:

,

,因此, 综上:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆为坐标原点,动点在圆外,过点分别作圆的切线,切点分别为.

1)若点在点位置时,求此时切线的方程;

2)若点满足,问直线上是否存在点,使得?如果存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某保险公司的某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下表:

上年度出险次数

0

1

2

3

保费(元)

随机调查了该险种的200名续保人在一年内的出险情况,得到下表:

出险次数

0

1

2

3

频数

140

40

12

6

2

该保险公司这种保险的赔付规定如下表:

出险序次

第1次

第2次

第3次

第4次

第5次及以上

赔付金额(元)

0

将所抽样本的频率视为概率。

(1)求本年度—续保人保费的平均值的估计值;

(2)求本年度—续保人所获赔付金额的平均值的估计值;

(3)据统计今年有100万投保人进行续保,若该公司此险种的纯收益不少于900万元,求的最小值(纯收益=总入保额-总赔付额)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(为常数)

(1)若

①求函数在区间上的最大值及最小值。

②若过点可作函数的三条不同的切线,求实数的取值范围。

(2)当时,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论的单调性;

(II)若恒成立,证明:当时,.

(III)在(II)的条件下,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)的最小值为﹣4,且关于x的不等式fx)≤0的解集为{x|1x3xR}

1)求函数fx)的解析式;

2)求函数gx的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S-ABC中,SA ⊥底面ABCAC=AB=SA=2,ACABDE分别是ACBC的中点,FSE上,且SF=2FE.

(Ⅰ)求异面直线AFDE所成角的余弦值;

(Ⅱ)求证:AF⊥平面SBC

(Ⅲ)设G为线段DE的中点,求直线AG与平面SBC所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,取得极值,求的值并判断是极大值点还是极小值点;

当函数有两个极值点,且时,总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知z为虚数,z+为实数.

(1)z-2为纯虚数,求虚数z.

(2)|z-4|的取值范围.

查看答案和解析>>

同步练习册答案