【题目】已知椭圆的左顶点为,离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)若直线与椭圆交于,两点,直线,分别与轴交于点,,求证:在轴上存在点,使得无论非零实数怎样变化,总有为直角,并求出点的坐标.
科目:高中数学 来源: 题型:
【题目】已知直线,,过点的直线分别与直线,交于,其中点在第三象限,点在第二象限,点;
(1)若的面积为,求直线的方程;
(2)直线交于点,直线交于点,若直线的斜率均存在,分别设为,判断是否为定值?若为定值,求出该定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3-2x2+3x(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方形沿对角线折成直二面角,下列结论:①与所成的角为:②与所成的角为:③与面所成角的正弦值为:④二面角的平面角正切值是:其中正确结论的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.
(Ⅰ)求这些产品质量指标值落在区间内的频率;
(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意
抽取2件产品,求这2件产品都在区间内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为(为参数),曲线的极坐标方程为,若曲线与相交于、两点.
(1)求的值;
(2)求点到、两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,、分别是、的中点.
(1)设棱的中点为,证明:平面;
(2)若,,,且平面平面.
(i)求三棱柱的体积;
(ii)求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com