【题目】已知点,,圆C的方程为,过点A的直线l与圆C相切,点P为圆C上的动点.
(1)求直线l的方程;
(2)求面积的最大值.
【答案】(1)或(2)
【解析】
(1)讨论直线的斜率是否存在.当斜率不存在时,易知不合题意.当斜率存在时,将圆的一般方程化为标准方程,结合点到直线距离公式及切线性质,即可求得斜率,进而得切线方程.
(2)由两点间距离公式可得,同时可得直线的方程.求得圆心到直线的距离,即可求得圆上的点到直线的最大值,即可求得面积的最大值.
(1)①当直线的斜率不存在时,的方程为,易知此直线与圆C相交,不合题意;
②当直线的斜率存在时,设的方程为,
圆C:的圆心,半径,
因为直线与圆C相切,
所以圆心到直线的距离.
则,解得或
所以直线的方程为或.
综上,直线的方程为或.
(2)由题意,得,直线的方程为,
则圆心到直线的距离.
所以点P到直线的距离的最大值为,
所以的面积的最大值为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,四个点,,,中有3个点在椭圆:上.
(1)求椭圆的标准方程;
(2)过原点的直线与椭圆交于,两点(,不是椭圆的顶点),点在椭圆上,且,直线与轴、轴分别交于、两点,设直线,的斜率分别为,,证明:存在常数使得,并求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是函数(,,,)在区间上的图象,为了得到这个函数的图象,只需将()的图像上所有的点( )
A. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
B. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变
C. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
D. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线经过椭圆的右焦点,交椭圆于点,,点为椭圆的左焦点,的周长为..
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与直线的倾斜角互补,且交椭圆于点、,,求证:直线与直线的交点在定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,直线()与椭圆交于,两点(点在轴的上方).
(1)若,求的面积;
(2)是否存在实数使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,且,,,点G,H分别为边,的中点,点M是线段上的动点.
(1)求证:;
(2)若,当三棱锥的体积最大时,求点C到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】江心洲有一块如图所示的江边,,为岸边,岸边形成角,现拟在此江边用围网建一个江水养殖场,有两个方案:方案l:在岸边上取两点,用长度为的围网依托岸边线围成三角形(,两边为围网);方案2:在岸边,上分别取点,用长度为的围网依托岸边围成三角形.请分别计算,面积的最大值,并比较哪个方案好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有个圆盘,较大的圆盘都在较小的圆盘下面.现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将个圆盘从起始柱移动到目标柱上最少需要移动的次数记为,则( )
A. 33B. 31C. 17D. 15
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com