【题目】已知抛物线:,圆:.
(1)若过抛物线的焦点的直线与圆相切,求直线方程;
(2)在(1)的条件下,若直线交抛物线于,两点,轴上是否存在点使(为坐标原点)?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1)切线方程为或.(2)见解析
【解析】
(1)先求得抛物线的焦点,根据点斜式设出直线的方程,利用圆心到直线的距离等于半径,求出直线的方程.(2)联立直线的方程和抛物线的方程,化简后写出韦达定理,根据,则列方程,解方程求得的值,进而求得点的坐标.
解:(1)由题知抛物线的焦点为,
当直线的斜率不存在时,过点的直线不可能与圆相切;
所以过抛物线焦点与圆相切的直线的斜率存在,
设直线斜率为,则所求的直线方程为,即,
所以圆心到直线的距离为,
当直线与圆相切时,有,
所以所求的切线方程为或.
(2)由(1)知,不妨设直线:,交抛物线于,两点,
联立方程组,
所以,,
假设存在点使,
则.
而,,
所以
,
即,
故存在点符合条件.
当直线:时,
由对称性易知点也符合条件.
综合可知在(1)的条件下,存在点使.
科目:高中数学 来源: 题型:
【题目】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A,B分别建有监测站,A与B之间的直线距离为100海里.
求海域ABCD的面积;
现海上P点处有一艘不明船只,在A点测得其距A点40海里,在B点测得其距B点海里判断这艘不明船只是否进入了海域ABCD?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)讨论函数的单调性;
(2)当时,若函数的导函数的图象与轴交于, 两点,其横坐标分别为, ,线段的中点的横坐标为,且, 恰为函数的零点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为等差数列,前项和为,是首项为的等比数列,且公比大于,,,.
(1)求和的通项公式;
(2)求数列的前项和;
(3)设,为数列的前项和,求不超过的最大整数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:,点为直线上任一点,过点作抛物线的两条切线,切点分别为,,
(1)证明,,三点的纵坐标成等差数列;
(2)已知当点坐标为时,,求此时抛物线的方程;
(3)是否存在点,使得点关于直线的对称点在抛物线上,其中点满足,若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱的侧棱与底面垂直,,,M是的中点,是的中点,点在上,且满足.
(1)证明:.
(2)当取何值时,直线与平面所成的角最大?并求该角最大值的正切值.
(3)若平面与平面所成的二面角为,试确定P点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将两块三角板按图甲方式拼好,其中, , ,
,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.
(1)求证: ;
(2)求证: 为线段中点;
(3)求二面角的大小的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com