精英家教网 > 高中数学 > 题目详情
7.圆C:(x-1)2+(y=2)2=4,点P(x0,y0)在圆C内部,且d=(x0-1)2+(y0+2)2,则d的取值范围是[0,4).

分析 利用点和圆的位置关系求解.

解答 解:∵圆C:(x-1)2+(y+2)2=4,点P(x0,y0)在圆C内部,
且d=(x0-1)2+(y0+2)2
∴0≤d<4.
∴d的取值范围是[0,4).

点评 本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意点和圆的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=lnx+x-$\frac{m}{x}$+1.
(1)当m=0时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)讨论y=f(x)的单调性;
(3)当m=-2时,求y=f(x)在[$\frac{1}{e}$,e]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(1)已知点M与两个定点O(0,0)、P(2,0)的距离的比为$\sqrt{3}$:1,求点M的轨迹方程;
(2)已知过点Q(-1,0)的直线l截(1)中M的轨迹的弦长为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:抛物线方程;y2=2px(p>0),经过原点O的直线;x+3y=0与抛物线交于点A,点B在抛物线上,且直线OB⊥OA,△AOB的面积为60.求:
(1)抛物线的方程;
(2)直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=2log${\;}_{\frac{1}{2}}$2x-2log${\;}_{\frac{1}{2}}$x+3的单调递增区间为[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a,b∈(0,1),记M=ab,N=a+b-1,则M与N的大小关系是M>N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A={x|$\frac{1}{2}$<2x<4},B={x|log2(x-1)<2}.
(1)求集合A和B
(2)求A∩B和A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x,y满足1g(lgy)=1g3x+1g(3-x),求y的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log2(x+$\frac{1}{4x-4}$).
(1)求函数f(x)的定义域;
(2)求函数f(x)的最小值及此时x的值.

查看答案和解析>>

同步练习册答案