【题目】在中,是AB边上的一点,CD=2,的面积为4,则AC的长为
【答案】或4
【解析】
解:由题意可得1/ 2 CBCDsin∠BCD=4,即 1 /2 ×2×2 sin∠BCD=4,解得 sin∠BCD="2" /.
①当∠BCD 为锐角时,cos∠BCD=1/.
△BCD中,由余弦定理可得 BD2= CB2+CD2-2CBCDcos∠BCD =42.
△BCD中,由正弦定理可得 BD /sin∠BCD ="CD" /sinB ,即 4 /2 /=" 2" sinB ,故 sinB=1 /.
在△ABC中,由正弦定理可得 AC/ sinB =" BC/" sinA ,即 AC /1 /="2"/1 /2 ,解得 AC=4.
②当∠BCD 为钝角时,cos∠BCD="-1" /.
△BCD中,由余弦定理可得 BD= CB2+CD2-2CBCDcos∠BCD =32.
△BCD中,由正弦定理可得 BD/ sin∠BCD ="CD/" sinB ,故 sinB="1" /.
在△ABC中,由正弦定理可得 AC/ sinB =" BC" /sinA , ,解得 AC=.
综上可得 AC=4或,
故答案为 4或.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C和抛物线y2=x交于M,N两点,且直线MN恰好通过椭圆C的右焦点.
(1)求椭圆C的标准方程;
(2)经过椭圆C右焦点的直线l和椭圆C交于A,B两点,点P在椭圆上,且 =2 ,其中O为坐标原点,求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 平面平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱A1B1C1 - ABC中,侧棱AA1丄底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是
A. CC1与B1E是异面直线 B. AC丄平面ABB1A1
C. A1C1∥平面AB1E D. AE与B1C1为异面直线,且AE丄B1C1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为( )
A.﹣或﹣
B.﹣或﹣
C.﹣或﹣
D.﹣或﹣
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的偶函数,且当时,.
(1)已画出函数在轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;
⑵写出函数的解析式和值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若m﹣ <x (m∈Z),则m叫做离实数x最近的整数,记作{x},即m={x},关于函数f(x)=x﹣{x}的四个命题:①定义域为R,值域为(﹣ , ]; ②点(k,0)是函数f(x)图象的对称中心(k∈Z);③函数f(x)的最小正周期为1; ④函数f(x)在(﹣ , ]上是增函数.上述命题中,真命题的序号是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①如果,是两条直线,且,那么平行于经过的任何平面;
②如果直线和平面满足,那么直线与平面内的任何直线平行;
③如果直线,和平面满足,,那么;
④如果直线,和平面满足,,,那么;
⑤如果平面,,满足,,那么.
其中正确命题的序号是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com