精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成3元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到频数表如下:

甲公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

20

40

20

10

10

乙公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

10

20

20

40

10

将上表中的频率视为概率,回答下列问题:

(1)现从甲公司随机抽取3名送餐员,求恰有2名送餐员送餐单数超过40的概率;

(2)(i)记乙公司送餐员日工资为X(单位:元),求X的数学期望;

(ii)某人拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日平均工资的角度考虑,他应该选择去哪家公司应聘,说明理由.

【答案】12见解析

【解析】试题分析:(1)由表格可知100天中,送餐天数超过40的有20天,根据古典概型即可求出概率;(2)计算乙公司送餐员日工资的期望值,计算甲公司的送餐员日平均工资,比较两者大小即可.

试题解析:1)从甲公司记录的100天中随机抽取1天,送餐单数超过40的概率有放回地抽取3次,3次抽取中,恰有2次送餐单数超过40的概率是

(2)(i)设乙公司送餐员送餐单数为a,乙公司送餐员日工资为X元.

当a=38时,X=38×5=190;当a=39时,X=39×5=195;当a=40时,X=40×5=200;当a=41时,X=40×5+1×7=207;当a=42时,X=40×5+2×7=214.

X的所有可能取值为190,195,200,207,214.

故X的分布列为:

X

190

195

200

207

214

P

X的数学期望E(X)=190×+195×+200×+207×+214×=(元).

(ii)公司送餐员日平均送餐单数为38×0.2+390.4+40×0.2+41×0.1+42×0.1=39.5.

所以甲公司送餐员日平均工资为70+3×39.5=188.5(元).

因为188.5<202.2,故这个人应该选择去乙公司应聘.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=1,an+1 (n∈N*).

(1)证明:数列是等比数列;

(2)设bn,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校初三年级有名学生,随机抽查了名学生,测试分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )

A. 该校初三年级学生分钟仰卧起坐的次数的中位数为

B. 该校初三年级学生分钟仰卧起坐的次数的众数为

C. 该校初三年级学生分钟仰卧起坐的次数超过次的人数约有

D. 该校初三年级学生分钟仰卧起坐的次数少于次的人数约为人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次有600人参加的数学测试,其成绩的频数分布表如图所示,规定85分及其以上为优秀.

区间

[75,80)

[80,85)

[85,90)

[90,95)

[95,100]

人数

36

114

244

156

50

(Ⅰ)现用分层抽样的方法从这600人中抽取20人进行成绩分析,求其中成绩为优秀的学生人数;

(Ⅱ)在(Ⅰ)中抽取的20名学生中,要随机选取2名学生参加活动,记“其中成绩为优秀的人数”为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 其中为自然对数的底数.

(Ⅰ)讨论函数的单调性.

(Ⅱ)是否存在实数使对任意恒成立若存在试求出的值若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}(nN*),首项a13,前n项和为Sn,且S3a3S5a5S4a4成等差数列.

1)求数列{an}的通项公式;

2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn[ab],求ba的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为y 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.

(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?

(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a(1≤a≤4)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a的最小值(精确到0.1,参考数据: 取1.4).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是直角梯形, 平面平面

Ⅰ)求证: 平面

Ⅱ)求平面和平面所成二面角(小于)的大小.

Ⅲ)在棱上是否存在点使得平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

Ia=2时,求曲线y = 在点(0f(0))处的切线方程;

II)求函数在区间[0 , e -1]上的最小值.

查看答案和解析>>

同步练习册答案