精英家教网 > 高中数学 > 题目详情

【题目】如城某观光区的平面示意图如图所示,其中矩形的长千米,宽千米,半圆的圆心中点.为了便于游客观光休闲,在观光区铺设一条由圆弧、线段组成的观光道路.其中线段经过圆心,且点在线段上(不含线段端点.已知道路的造价为元每千米,道路造价为元每千米,设,观光道路的总造价为.

1)试求的函数关系式:

2)当为何值时,观光道路的总造价最小.

【答案】1;(2.

【解析】

1)由题意可知,过点,垂足为,则,求出,即可求出的函数关系式

2)求导数,确定函数的单调性,即可得出当为何值时,观光道路的总造价最小.

1)由题意可知,过点,垂足为,则

2

,即,解得,列表如下:

极大值

所以,函数在区间上单调递减,在区间上单调递增,

因此,当时,观光道路的总造价最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现将按照如下规律从左到右进行排列:若每一个或“○”占1个位置,即上述图形中,第1位是“□”,第4位是“○”,第7位是 “□”,则在第2017位之前(不含第2017位),“○”的个数为(

□,○,□,○,○,○,□,○,○,○,○,○,□,○,○,○,○,○,○,○

A.1970B.1971C.1972D.1973

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).

(Ⅰ)求曲线上的点到直线的距离的最大值;

(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某亲子公园拟建议广告牌,将边长为米的正方形ABCD和边长为1米的正方形AEFGA点处焊接,AM、AN、GM、DN均用加强钢管支撑,其中支撑钢管GM、DN垂直于地面于M点和N点,且GM、DN、MN长度相等不计焊接点大小

时,求焊接点A离地面距离;

若记,求加强钢管AN最长为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:

质量指标值m

25≤m35

15≤m2535≤m45

0m1545≤m65

等级

一等品

二等品

三等品

某企业从生产的这种产品中抽取100件产品作为样本,检测其质量指标值,得到下图的率分布直方图.(同一组数据用该区间的中点值作代表)

1)该企业为提高产品质量,开展了质量提升月活动,活动后再抽样检测,产品三等品数Y近似满足YH1015100),请测算质量提升月活动后这种产品的二等品率(一、二等品其占全部产品百分比)较活动前提高多少个百分点?

2)若企业每件一等品售价180元,每件二等品售价150元,每件三等品售价120元,以样本中的频率代替相应概率,现有一名联客随机购买两件产品,设其支付的费用为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑中,平面,且,过点分别作于点于点,连结,当的面积最大时,__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )

A. 乙有四场比赛获得第三名

B. 每场比赛第一名得分

C. 甲可能有一场比赛获得第二名

D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:

学校

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.

(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;

(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜三棱柱的侧面与底垂直,侧棱与底面所成的角为.

1)求证:平面平面

2)若为棱上的点,且三棱锥的体积为,求的值.

查看答案和解析>>

同步练习册答案