精英家教网 > 高中数学 > 题目详情
4.已知x∈R+,函数f($\frac{1}{x}$)=-f(x),f($\frac{2}{x}$)=-f(2x),若x∈[1,2]时,f(x)=(x-1)(x-2),则函数y=f(x)+$\frac{1}{4}$在区间[1,100]内零点的个数为4.

分析 由条件,将x换为2x,可得f(x)=f(4x),分别求得区间[2,4],[4,8],[8,16],[16,32],[32,64],[64,128]内的函数的解析式,再由f(x)=-$\frac{1}{4}$,解方程即可判断零点的个数.

解答 解:函数f($\frac{1}{x}$)=-f(x),f($\frac{2}{x}$)=-f(2x),
即有f($\frac{1}{2x}$)=-f(2x),则f($\frac{2}{x}$)=f($\frac{1}{2x}$),
即为f(x)=f(4x),
当x∈[1,2]时,f(x)=(x-1)(x-2),
当$\frac{1}{4}$≤x≤$\frac{1}{2}$时,1≤4x≤2,f(4x)=(4x-1)(4x-2),
即f(x)=(4x-1)(4x-2);
当$\frac{1}{2}$≤x≤1时,1≤$\frac{1}{x}$≤2,f(x)=-f($\frac{1}{x}$)=-($\frac{1}{x}$-1)($\frac{1}{x}$-2);
当2≤x≤4时,$\frac{1}{2}$≤$\frac{x}{4}$≤1,f(x)=f($\frac{x}{4}$)=-($\frac{4}{x}$-1)($\frac{4}{x}$-2);
当4≤x≤8时,1≤$\frac{x}{4}$≤2,f(x)=f($\frac{x}{4}$)=($\frac{x}{4}$-1)($\frac{x}{4}$-2);
当8≤x≤16时,2≤$\frac{x}{4}$≤4,f(x)=f($\frac{x}{4}$)=-($\frac{16}{x}$-1)($\frac{16}{x}$-2);
当16≤x≤32时,4≤$\frac{x}{4}$≤8,f(x)=f($\frac{x}{4}$)=($\frac{x}{16}$-1)($\frac{x}{16}$-2);
当32≤x≤64时,8≤$\frac{x}{4}$≤16,f(x)=f($\frac{x}{4}$)=-($\frac{64}{x}$-1)($\frac{64}{x}$-2);
当64≤x≤128时,16≤$\frac{x}{4}$≤32,f(x)=f($\frac{x}{4}$)=($\frac{x}{64}$-1)($\frac{x}{64}$-2).
令y=f(x)+$\frac{1}{4}$=0,即为f(x)=-$\frac{1}{4}$,
当x∈[1,2]时,f(x)=(x-1)(x-2),由f(x)=-$\frac{1}{4}$,解得x=$\frac{3}{2}$;
同理当x∈[4,8]时,由f(x)=-$\frac{1}{4}$,解得x=6;
当x∈[16,32]时,由f(x)=-$\frac{1}{4}$,解得x=24;
当x∈[64,100]时,由f(x)=-$\frac{1}{4}$,解得x=96;
当2≤x≤4时,f(x)=-($\frac{4}{x}$-1)($\frac{4}{x}$-2),由f(x)=-$\frac{1}{4}$,x∈∅;
同理8≤x≤16时,由f(x)=-$\frac{1}{4}$,x∈∅;
32≤x≤64时,由f(x)=-$\frac{1}{4}$,x∈∅.
综上可得,函数y=f(x)+$\frac{1}{4}$在区间[1,100]内零点的个数为4.
故答案为:4.

点评 本题考查函数的零点的个数的求法,注意运用函数方程的转化思想,同时考查函数的解析式的求法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某校书法兴趣组有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级二年级三年级
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人参加书法比赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且性别相同”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线的方程为3x+4y-3=0,圆的方程为(x-1)2+(y-1)2=1,则直线与圆的位置关系为(  )
A.相交B.相切C.相离D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.讨论函数f(x)=$\left\{\begin{array}{l}{x+1}&{x≥1}\\{3-x}&{x<1}\end{array}\right.$在点x=1处的连续性,并画出它的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知∠ABC=90°,BC∥平面α,AB与平面α斜交,那么∠ABC在平面α内的射影是(  )
A.锐角B.直角
C.锐角或直角D.锐角或直角或钝角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=$\frac{{x}^{2}-x}{\sqrt{2x+1}}$,g(x)=$\frac{\sqrt{2x+1}}{x-1}$,则f(x)•g(x)=x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知直线a与三条平行直线m、n、l分别相交于A、B、C.求证:直线a、m、n、l共面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式kx-1≥lnx恒成立,则实数k的取值范围是[1,+∞)
不等式x+a≥lnx恒成立,则实数a的取值范围是[-1,+∞)
不等式x-1≥αlnx恒成立,则实数α的值是1
不等式kx≥lnx恒成立,则实数k的取值范围是[$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Sn是数列{an}的前n项和,S2=2,且2Sn+nS1=nan
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n+2}}$-2,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案