精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人同时参加一次数学测试,共有道选择题,每题均有个选项,答对得分,答错或不答得分.甲和乙都解答了所有的试题,经比较,他们只有道题的选项不同,如果甲最终的得分为分,那么乙的所有可能的得分值组成的集合为____________

【答案】

【解析】

将甲、乙两人选项不同的试题分成两类,一类是在甲答对的题目中,另一类是在甲答错的题目中,再结合乙能否答对的情况,求得乙的所有可能的得分值组成的集合.

甲得分有分,所以甲一共答对题,答错. 将甲、乙两人选项不同的试题分成两类,一类是在甲答对的题目中,另一类是在甲答错的题目中.

若选项不同的试题在甲答对的题目中,则乙的选项错误,故乙一共答对题,答错题,得分为.

若选项不同的试题在甲答错的题目中,

i)若乙答错此题,则乙一共答对题,答错题,得分为.

ii)若乙答对此题,则乙一共答对题,答错题,得分为.

综上所述,乙的所有可能的得分值组成的集合为.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线)与双曲线)有相同的焦点,点是两条曲线的一个交点,且轴,则该双曲线经过一、三象限的渐近线的倾斜角所在的区间是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求证上是单调递减函数;

2)若对任意的,不等式恒成立,求实数的取值范围;

3)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;

(1)将表示为的函数;

(2)若,求总用氧量的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近来天气变化无常,陡然升温、降温幅度大于的天气现象出现增多.陡然降温幅度大于容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的名幼儿进行调查,得到了如下的列联表,若在全部名幼儿中随机抽取人,抽到患伤风感冒疾病的幼儿的概率为,

(1)请将下面的列联表补充完整;

患伤风感冒疾病

不患伤风感冒疾病

合计

25

20

合计

100

(2)能否在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有关?说明你的理由;

(3)已知在患伤风感冒疾病的名女性幼儿中,名又患黄痘病.现在从患伤风感冒疾病的名女性中,选出名进行其他方面的排查,记选出患黄痘病的女性人数为,的分布列以及数学期望.下面的临界值表供参考:

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的单调区间;

2)若关于的方程有四个不同的解,求实数应满足的条件;

3)在(2)条件下,若成等比数列,用表示t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一智能扫地机器人在A处发现位于它正西方向的B处和北偏东方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少0.4m,于是选择沿路线清扫.已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B处旋转所用时间,10秒钟完成了清扫任务.

1BC两处垃圾的距离是多少?(精确到0.1

2)智能扫地机器人此次清扫行走路线的夹角是多少?(用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型:以表示第个时刻进入园区的人数;以表示第个时刻离开园区的人数.设定以分钟为一个计算单位,上午分作为第个计算人数单位,即分作为第个计算单位,即;依次类推,把一天内从上午点到晚上分分成个计算单位(最后结果四舍五入,精确到整数).

1)试计算当天点至点这一小时内,进入园区的游客人数、离开园区的游客人数各为多少?

2)假设当日园区游客总人数达到或超过万时,园区将采取限流措施.该单位借助该数学模型知晓当天点(即)时,园区总人数会达到最高,请问当日是否要采取限流措施?说明理由.

查看答案和解析>>

同步练习册答案