【题目】已知抛物线()经过点,直线与抛物线有两个不同的交点、,直线交轴于,直线交轴于.
(1)若直线过点,求直线的斜率的取值范围;
(2)若直线过点,设,,,求的值;
(3)若直线过抛物线的焦点,交轴于点,,,求的值.
【答案】(1)且且;(2);(3).
【解析】
(1)由题意易得直线斜率存在且不为,且直线、斜率存在,设出直线方程,并联立抛物线方程,根据交点有两个,得出,解不等式即可得直线斜率的范围.
(2)根据,,得出、与点坐标之间的关系,再根据在同一直线上,在同一直线上,得出,与点坐标之间的关系,根据(1)中联立所得的方程得出点横坐标之间的关系,对原式进行化简,即可得的值.
(3) 设直线的方程为:联立直线与抛物线的方程得出点纵坐标之间的关系,再由,,得出、与点坐标之间的关系,对化简可求得的值.
(1)因为抛物线经过点,所以,所以,所以抛物线的解析式为。
又因为直线过点,且直线与抛物线有两个不同的交点,易知直线斜率存在且不为,故可设直线的方程式为.
根据题意可知直线不能过点,所以直线的斜率.
若直线与抛物线的一个交点为,此时该点与点所在的直线斜率不存在,则该直线与轴无交点,与题目条件矛盾,
此时,所以直线斜率.
联立方程,得,
因为直线与抛物线有两个不同的交点,所以,所以。
故直线的斜率的取值范围是且且.
(2)设点,,则,,
因为,所以,故,由得,
设,,直线的方程为,
令,得①,由直线可得②,
因为③,将①②代入③可得,
,
又由根与系数的关系:,,
所以,
所以.
(3)设直线的方程为:由,得,设,,
则,∵,,,,
∴,,∴,
.
科目:高中数学 来源: 题型:
【题目】如图,C、D是离心率为的椭圆的左、右顶点,、是该椭圆的左、右焦点, A、B是直线4上两个动点,连接AD和BD,它们分别与椭圆交于点E、F两点,且线段EF恰好过椭圆的左焦点. 当时,点E恰为线段AD的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:以AB为直径的圆始终与直线EF相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】菜市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图1所示的频率分布南方匿,接着调查了该市2018年1月﹣2019年1月期间当月在售二手房均价(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1﹣13分别对应2018年1月至2019年1月).
(1)试估计该市市民的平均购房面积.
(2)现采用分层抽样的方法从购房耐积位于的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率.
(3)根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如表所示:
| ||
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到
参考数据:,,,,,,,.参考公式:相关指数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为,样本数据分组为,,,,.
(1)求直方图中a的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;
(3)求该校学生上学路上所需的平均时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)经过点(0,),点F是椭圆的右焦点,点F到左顶点的距离和到右准线的距离相等.过点F的直线交椭圆于M,N两点.
(1)求椭圆C的标准方程;
(2)当MF=2FN时,求直线的方程;
(3)若直线上存在点P满足PM·PN=PF2,且点P在椭圆外,证明:点P在定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( )
①对于命题,使得,则,均有;
②命题“已知x,,若,则或”是真命题;
③设,是非零向量,则“”是“”的必要不充分条件;
④是直线与直线互相垂直的充要条件.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com