精英家教网 > 高中数学 > 题目详情

【题目】众志成城,抗击疫情,一方有难,八方支援,在此次抗击疫情过程中,各省市都派出援鄂医疗队. 假设汕头市选派名主任医生,名护士,组成三个医疗小组分配到湖北甲、乙、丙三地进行医疗支援,每个小组包括名主任医生和名护士,则不同的分配方案有(

A.B.C.D.

【答案】C

【解析】

先求把6名医生平均分成3组的方法,再求将3组医生与3名护士进行全排列组成医疗小组的方法,最后求把3个医疗小组分到3个地方的方法,最后求积即可.

解:分三步进行:

1)将6名医生分成3组,有种方法,

2)将分好的三组与三名女护士进行全排列,组成三个医疗小组有种方法,

3)将分好的三个医疗小组进行全排列,对应于甲、乙、丙三地有种方法,

则不同的分配方案有种方法,

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,则其体积为_________,若该圆柱的三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从MN的路径中,最短路径的长度为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABCA1B1C1EF分别是棱CC1AB的中点.

1)证明:CF∥平面AEB1

2)若ACBCAA14,∠ACB90°,求三棱锥B1ECF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,ACDGEF,且.

1)证明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形ABCD中(如图1),,点ECD上,且,将沿AE折起,使得平面平面ABCE(如图2),GAE中点.

(Ⅰ)求四棱锥的体积;

(Ⅱ)在线段BD上是否存在点P,使得平面ADE?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若,则函数的零点个数为________;若函数4个零点,则实数的取值范围是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若,对恒成立,求实数的取值范围;

3)当时,设.若正实数满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的导数为

1)若不等式对任意恒成立,求实数的取值范围.

2)若上有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

同步练习册答案