16£®ÇúÏßC1µÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=1+tcos\frac{¦Ð}{4}}\\{y=5+tsin\frac{¦Ð}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=cos¦Õ}\\{y=\sqrt{3}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßC2µÄÆÕͨ·½³Ì£¬ÈôÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£¬ÇóÇúÏßC1µÄ¼«×ø±êϵ·½³Ì£»
£¨2£©ÈôµãPΪÇúÏßC2ÉÏÈÎÒâÒ»µã£¬ÇóµãPµ½ÇúÏßC1¾àÀëµÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉcos2¦Õ+sin2¦Õ=1£¬ÄÜÇó³öÇúÏßC2µÄÆÕͨ·½³Ì£¬ÏÈÇó³öÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉ´ËÄÜÇó³öÇúÏßC1µÄ¼«×ø±êϵ·½³Ì£®
£¨2£©ÉèµãP£¨$cos¦Õ\sqrt{3}sin¦Õ$£©£¬ÓÉ´ËÀûÓõãPµ½ÇúÏßC1¾àÀ빫ʽÄÜÇó³öµãPµ½ÇúÏßC1¾àÀëµÄ×îСֵ£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC2µÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=cos¦Õ\\ y=\sqrt{3}sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬
¡àÇúÏßC2µÄÆÕͨ·½³ÌΪ${x}^{2}+\frac{{y}^{2}}{3}$=1£¬
¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=1+tcos\frac{¦Ð}{4}\\ y=5+tsin\frac{¦Ð}{4}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪx-y+4=0£¬
¡àÇúÏßC1µÄ¼«×ø±êϵ·½³ÌΪ¦Ñcos¦È-¦Ñsin¦È+4=0£®
£¨2£©¡ßµãPΪÇúÏßC2ÉÏÈÎÒâÒ»µã£¬¡àÉèµãP£¨$cos¦Õ\sqrt{3}sin¦Õ$£©£¬
¡àµãPµ½ÇúÏßC1¾àÀ룺d=$\frac{|cos¦Õ-\sqrt{3}sin¦Õ+4|}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$|2sin£¨¦Õ+150¡ã£©+4|£¬
¡àµãPµ½ÇúÏßC1¾àÀëµÄ×îСֵΪdmin=$\frac{\sqrt{2}}{2}$|-2+4|=$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢ÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½ÇúÏߵľàÀëµÄ×îСֵµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⼫×ø±êºÍÖ±½Ç×ø±ê»¥»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚ¡÷ABCÖУ¬tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB£¬ÇÒsinA•cosA=$\frac{\sqrt{3}}{4}$£¬Ôò´ËÈý½ÇÐÎΪ£¨¡¡¡¡£©
A£®µÈÑüÈý½ÇÐÎB£®Ö±½ÇÈý½ÇÐÎC£®µÈÑüÖ±½ÇÈý½ÇÐÎD£®µÈ±ßÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÕýËÄÃæÌåABCDÖУ¬AO¡ÍƽÃæBCD£¬´¹×ãΪO£¬ÉèMÊÇÏ߶ÎAOÉÏÒ»µã£¬ÇÒ¡ÏBMC=90¡ãÊÇÖ±½Ç£¬Ôò$\frac{AM}{MO}$µÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{\frac{x+1}{x-2}}$µÄ¶¨ÒåÓòΪ¼¯ºÏA£¬º¯Êýg£¨x£©=$\sqrt{{x^2}-£¨2a+1£©x+{a^2}+a}$µÄ¶¨ÒåÓòΪ¼¯ºÏB£®
£¨1£©Ç󼯺ÏA¡¢B£»
£¨2£©ÈôA¡ÉB=A£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+3cos¦È}\\{y=3sin¦È-2}\end{array}}\right.£¨¦ÈΪ²ÎÊý£©$£¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin¦È+2¦Ñcos¦È=3£¬ÇóÖ±Ïßl±»Ô²C½ØµÃµÄÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄÇ°nºÍΪSn£¬ÇÒa5=S3=9£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éè${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$£¬ÉèÊýÁÐ{bn}Ç°nÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ÒÑÖªÕý·½ÌåABCD-A1B1C1D£¬ÈôÔÚÆä12ÌõÀâÖÐËæ»úµØÈ¡3Ìõ£¬ÔòÕâÈýÌõÀâÁ½Á½ÊÇÒìÃæÖ±ÏߵĸÅÂÊÊÇ$\frac{2}{55}$£¨½á¹ûÓÃ×î¼ò·ÖÊý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô$\sqrt{x+2}+\sqrt{1-x}$ÓÐÒâÒ壬Ôòº¯Êýy=x2+3x-5µÄÖµÓòÊÇ$[{-\frac{29}{4}£¬-1}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬a2=2£¬an+2=£¨2+cosn¦Ð£©£¨an-1£©+3£¬n¡ÊN*£®ÄÇôÊýÁÐ{an}µÄͨÏʽΪan=$\left\{\begin{array}{l}{n£¬nΪÆæÊý}\\{2¡Á{3}^{\frac{n-2}{2}}£¬nΪżÊý}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸