精英家教网 > 高中数学 > 题目详情
8.设θ∈(0,$\frac{π}{4}$),则二次曲线$\frac{{x}^{2}}{tanθ}$-tanθ•y2=1的离心率的取值范围为(  )
A.(1,$\sqrt{2}$]B.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

分析 根据已知可得e=$\frac{c}{a}$=$\frac{1}{sinθ}$,结合设θ∈(0,$\frac{π}{4}$),可得答案.

解答 解:二次曲线$\frac{{x}^{2}}{tanθ}$-tanθ•y2=1可化为:$\frac{{x}^{2}}{tanθ}-\frac{{y}^{2}}{cosθ}=1$,
其中a2=tanθ,b2=cotθ,
∴c2=tanθ+cotθ=$\frac{1}{sinθ•cosθ}$,
∴e=$\frac{c}{a}$=$\sqrt{\frac{\frac{1}{sinθ•cosθ}}{tanθ}}$=$\frac{1}{sinθ}$,
∵θ∈(0,$\frac{π}{4}$),
∴sinθ∈(0,$\frac{\sqrt{2}}{2}$),
∴e∈($\sqrt{2}$,+∞),
故选:D.

点评 本题考查的知识点是双曲线的简单性质,其中求出离心率的表达式,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以原点O为圆心,以椭圆C的长半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的标准方程
(2)过椭圆C的右焦点F作斜率为-$\frac{\sqrt{2}}{2}$的直线l交椭圆C于A,B两点,且$\overrightarrow{OA}+\overrightarrow{OD}=\overrightarrow{BO}$,又点D关于坐标原点O的对称点为点E,求AB与DE两条线段的垂直平分线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=$\frac{2π}{3}$,管理部门欲在该地从M到D修建小路;在$\widehat{MN}$上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.
(1)设∠PBC=θ,试用θ表示修建的小路$\widehat{MP}$与线段PQ及线段QD的总长度l;
(2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点A(2,4)在幂函数y=f(x)的图象上,也在函数g(x)=f(x)+$\frac{a}{{x}^{3}}$-1
(1)求函数g(x)的图象在点A处的切线与坐标轴围成的三角形的面积;
(2)若函数h(x)=mf(x)-g(x)-1nx在[1,5]上单调递增,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an},并且an=$\left\{\begin{array}{l}{{n}^{2}-5xn+8,n≤5且n{∈N}^{*}}\\{(x-23{)log}_{2}(n-4),n>5且n{∈N}^{*}}\end{array}\right.$,若{an}是递减数列,则实数x的取值范围是[2,23).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求证:cos($\frac{3}{2}$π-α)=-sinα,sin($\frac{3}{2}$π-α)=-cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式x2≤4的解集是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.2015年6月中旬,经过北京市自住房摇号,洪某摇中一套两居室自住房,户型面积为84m2,销售均价为28000元/m2,他打算采用公积金贷款的方式缴纳房款,经查询,五年以上公积金贷款利率为4%,五年及以下公积金贷款利率为3.5%,经过盘算.洪某打算贷款额度为所购住房价款的70%(四舍五入精确到万),并选择等额本息的还款方式还25年,但当他准备贷款时,公积金贷款利率自2015年6月28日调整了,五年以上公积金贷款利率为3.5%,五年及以下公积金贷款利率为3%.问:
(1)在原公积金贷款利率下,洪某每月需要还款多少(精确到元)?25年总共还多少利息?
(2)若洪某以之前设定好的每月还款额还款(四舍五入到整数元),在调整了公积金贷款利率后需要还多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若正方体的体对角线长是4,则正方体的体积是$\frac{64\sqrt{3}}{9}$.

查看答案和解析>>

同步练习册答案