精英家教网 > 高中数学 > 题目详情

如图,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域(图中白色部分).若在此三角形内随机取一点,则点落在区域内的概率为     

 

 

【答案】

【解析】

试题分析:每个小扇形的半径均为,三个扇形的面积和为

等腰直角三角形的面积,故区域的面积,因此点落在区域内的概率为.

考点:几何概型概率的计算

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,一个等腰直角三角形的硬纸片△ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高,沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能够量长度的直尺,应该如何确定A、B的位置,使得二面角A-CD-B是直二面角?证明你的结论.
(2)试在平面ABC上确定一点P,使DP与平面ABC内任意一条直线垂直,证明你的结论.
(3)如果在折成的三棱锥内有一个小球,求出球的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)如图,一个等腰直角三角形的直角边长为2,分别以三个顶点为 圆心,l为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P,则点P落在区 域M内的概率为
1-
π
4
1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个等腰直角三角形的硬纸片△ABC中,∠ACB=90°,AC=4cmCD是斜边上的高,沿CD把△ABC折成直二面角.

⑴如果你手中只有一把能够量长度的直尺,应该如何确定AB的位置,使得二面角ACDB是直二面角?证明你的结论.

⑵试在平面ABC上确定一点P,使DP与平面ABC内任意一条直线垂直,证明你的结论.

⑶如果在折成的三棱锥内有一个小球,求出球的半径的最大值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省鄂州市高一(下)期末数学试卷(文理合卷)(解析版) 题型:解答题

如图,一个等腰直角三角形的硬纸片△ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高,沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能够量长度的直尺,应该如何确定A、B的位置,使得二面角A-CD-B是直二面角?证明你的结论.
(2)试在平面ABC上确定一点P,使DP与平面ABC内任意一条直线垂直,证明你的结论.
(3)如果在折成的三棱锥内有一个小球,求出球的半径的最大值.

查看答案和解析>>

同步练习册答案