【题目】抚州市某中学利用周末组织教职员工进行了一次秋季登军峰山健身的活动,有人参加,现将所有参加人员按年龄情况分为,,,,,,等七组,其频率分布直方图如下图所示.已知之间的参加者有4人.
(1)求和之间的参加者人数;
(2)组织者从之间的参加者(其中共有名女教师包括甲女,其余全为男教师)中随机选取名担任后勤保障工作,求在甲女必须入选的条件下,选出的女教师的人数为2人的概率.
(3)已知和之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?
【答案】(1),(2)(3)
【解析】
(1)先根据频率分布直方图求出年龄在和内的频率,再根据样本总数=频数/频率,即可求出和;(2)根据古典概型的概率计算公式,通过列举,分别求出“在甲女必须入选的条件下”的基本事件总数,“在甲女必须入选的条件下,选出的女教师的人数为2人”的事件数,即可算出概率;(3)根据相互独立事件同时发生的概率公式,只需分别求出两组各自选取两人中至少有一名数学老师的概率,相乘即可求出。
(1)由题可知,,故,
而,则
(2)由题可知,则有4名女教师和2名男教师,设女教师为甲,乙,丙,丁,男教师为A,B,从中随机选取3名担任后勤保障工作,由于甲女一定入选,所以只需从剩下的5名老师中选取2名,基本事件有如下10种情况,(乙丙)(乙丁)(乙A)(乙B)(丙丁)(丙A)(丙B)(丁A)(丁B)(AB),其中恰有2女教师的有(乙A)(乙B)(丙A)(丙B)(丁A)(丁B)共6种情况,故
(3)由题可知,,,所以
,而两组的选择互不影响,所以互为独立事件,故
科目:高中数学 来源: 题型:
【题目】某班要从6名男生4名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数结果用数字作答.
(1)所安排的男生人数不少于女生人数;
(2)男生甲必须是课代表,但不能担任语文课代表;
(3)女生乙必须担任数学课代表,且男生甲必须担任课代表,但不能担任语文课代表.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α= .
(1)写出圆C的普通方程和直线l的参数方程;
(2)设直线l与圆C相交于A,B两点,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点在椭圆上,过作轴的垂线,垂足为.
(1)若点满足,试求点的轨迹的方程;
(2)直线与相交于,两点,且与(1)中的相切,线段的垂直平分线与轴相交于点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空间四边形ABCD的对棱AD,BC成60°的角,且AD=a,BC=b,平行于AD与BC的截面分别交AB,AC,CD,BD于E、F、G、H,则截面EFGH面积的最大值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,E是棱PC上的一点.
(1)证明:平面平面 .
(2)若,F是PB的中点,,,求直线DF与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com