精英家教网 > 高中数学 > 题目详情

【题目】已知满足.

(1)求取到最值时的最优解;

2)求的取值范围;

3)若恒成立,求的取值范围.

【答案】(1)C(3,2)和B(2,4)(2) (3)

【解析】试题分析:(1)画出可行域,找出直线交点坐标,移动目标函数,找到最优解(2)目标函数表示(x,y)与(2,-1)间斜率;(3)由于直线恒过定点(0,3)时, 恒成立.

试题解析:

(1)由图可知:

直线与直线交点A(1,1);直线与直线交点B(2,4);

直线与直线交点C(3,2);

目标函数在C(3,2)点取到最小值,B(2,4)点取到最大值

取到最值时的最优解是C(3,2)和B(2,4)

(2)目标函数,由图可知:

.

(3)由于直线恒过定点(0,3)时, 恒成立

,或由题意可知 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有以下三个案例:

案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其三聚氰胺含量;

案例二:某公司有员工800人:其中高级职称的160人,中级职称的320人,初级职称200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入情况;

案例三:从某校1000名学生中抽10人参加主题为“学雷锋,树新风”的志愿者活动.

(1)你认为这些案例应采用怎样的抽样方式较为合适?

(2)在你使用的分层抽样案例中写出每层抽样的人数;

(3)在你使用的系统抽样案例中按以下规定取得样本编号:如果在起始组中随机抽取的码为(编号从0开始),那么第组(组号从0开始,)抽取的号码的百位数为组号,后两位数为的后两位数.若,试求出时所抽取的样本编号.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为3x+4y﹣12=0,求直线l'的方程,使得:
(1)l'与l平行,且过点(﹣1,3);
(2)l'与l垂直,且l'与两轴围成的三角形面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,异面直线所成角等于.

(1)求证: 平面平面

(2)求直线和平面所成角的正弦值;

(3) 在棱上是否存在一点,使得平面与平面所成锐二面角的正切值为?若存在,指出点在棱上的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国标准采用世卫组织设定的最宽限值.即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;75微克/立方米以上空气质量为超标.

某市环保局从360天的市区监测数据中统计了1月至10月的每月的平均值(单位:微克/立方米),如下表所示.

月份

1

2

3

4

5

6

7

8

9

10

月均值

32

28

25

31

34

33

45

44

63

68

(1)从5月到10月的这6个数据中任取2个数值,求这个2个数值均为二级的概率;

(2)求月均值关于月份的回归直线方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的部分图象如图所示.

(1)求f(x)> 在x∈[0,π]上的解集;
(2)设g(x)=2 cos2x+f(x),g(α)= + ,α∈( ),求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的公比为q(q≠0),其前项和为Sn , 若S3 , S9 , S6成等差数列,则q3=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}为等比数列,数列{bn}满足bn=na1+(n﹣1)a2+…+2an1+an , n∈N* , 已知b1=m, ,其中m≠0.
(1)求数列{an}的首项和公比;
(2)当m=1时,求bn
(3)设Sn为数列{an}的前n项和,若对于任意的正整数n,都有Sn∈[1,3],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=x2+2mx+
(1)用定义法证明f(x)在R上是增函数;
(2)求出所有满足不等式f(2a﹣a2)+f(3)>0的实数a构成的集合;
(3)对任意的实数x1∈[﹣1,1],都存在一个实数x2∈[﹣1,1],使得f(x1)=g(x2),求实数m的取值范围.

查看答案和解析>>

同步练习册答案