精英家教网 > 高中数学 > 题目详情
函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0、
(1)求证:f(x)在(-∞,+∞)上为增函数;
(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.
【答案】分析:(1)利用单调性的定义证明,任取x1、x2∈R,且x1<x2,证明即f(x1)<f(x2),即可;
(2)先将原不等式化成f[log2(x2-x-2)]<f(2),再利用(1)的结论脱“f”符号转化为对数不等式解之即可.
解答:解:(1)证明:设x2>x1,则x2-x1>0、
∵f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+
f(x1)-f(x1)=f(x2-x1)>0,
∴f(x2)>f(x1),f(x)在(-∞,+∞)上为增函数
(2)∵f(1)=1,∴2=1+1=f(1)+f(1)=f(2)
又f[log2(x2-x-2)]<2,∴f[log2(x2-x-2)]<f(2)
∴log2(x2-x-2)<2,于是
∴即-2<x<-1或2<x<3
∴原不等式的解集为{x|-2<x<-1或2<x<3}.
点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对任意的实数x,y都有f(x+y)=f(x)+f(y)+2y(x+y)+1且f(1)=1.
(1)若x∈N*,试求f(x)的解析式;
(2)若x∈N*,且x≥2时,不等式f(x)≥(a+7)x-(a+10)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函,下面四个函数:
①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
xx2+x+1

其中属于有界泛函的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
x
x2+x+1

其中属于有界泛函数的是(  )
A、①②B、①③C、③④D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)对任意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”,
(1)判断g(x)=sinx和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有 |xn+1-xn|≤
1
(2n+1)2
,设yn=sinxn,求证:|yn+1-y1|<
1
4

查看答案和解析>>

同步练习册答案