【题目】(1)如果把棱柱中过不相邻的两条侧棱的截面叫棱柱的“对角面”,则平行六面体的对角面的形状是_______,直平行六面体的对角面的形状是______;
(2)过正三棱柱底面的一边和两底面中心连线段的中点作截面,则这个截面的形状为_____.
【答案】平行四边形 矩形 梯形
【解析】
(1)根据棱柱的定义,侧棱平行且相等,直六面体侧棱与底面垂直,即可得出结论;
(2)将过正三棱柱底面的一边和两底面中心连线段的中点的截面延展,利用辅助平面做相交线和平行线,确定出与底面和侧面的交线,即可得出截面形状.
(1)由棱柱的定义可得,侧棱平行且相等,
过不相邻的两条侧棱的截面对边平行且相等的四边形,
所以“对角面”是平行四边形;
直平行六面体的侧棱与底面垂直,所以侧棱垂直底面的对角线,
所以“对角面”是矩形;
(2)如图正三棱柱,上下底面的中心为,
延长,分别与交于,连,
则在同一个平面内,在平面中,
过及中点作直线与相交于,
过作的平行线分别与交于,
则梯形为过点和点的截面.
故答案为: (1)平行四边形,矩形;(2) 梯形.
科目:高中数学 来源: 题型:
【题目】设n为给定的大于2的整数。有n个外表上没有区别的袋子,第k(k=1,2,···,n)个袋中有k个红球,n-k个白球。将这些袋子混合后,任选一个袋子,并且从中连续取出三个球(每次取出不放回)。求第三次取出的为白球的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:
注:尺寸数据在内的零件为合格品,频率作为概率.
(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;
(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;
(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设要考察某公司生产的克袋装牛奶的质量是否达标,现从袋牛奶中抽取袋牛奶进行检验,利用随机数表抽样时,先将袋牛奶按、、、进行编号,如果从随机数表第行第列开始向右读,请你依次写出最先检测的袋牛奶的编号_____________,_____________,_____________,_____________,_____________.(下面摘取了随机数表第行至第行)
8842 1753 3157 2455 0688 7704 7476 7217 6335 0258 3921 2067 64
6301 6378 5916 9556 6719 9810 5071 7512 8673 5807 4439 5238 79
3321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279 54
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体的长,宽,高分别为4,3,5,现有一甲壳虫从点出发沿长方体表面爬行到点来获取食物.
(1)甲壳虫想尽快获取食物可通过哪些路径获取?
(2)哪条获取食物的路径最短?最短为多少?
(3)此类问题的一般处理方法是什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”, 并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少,“铁杆足球迷”愿意前往观看的人数会减少.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接旅游旺季的到来,少林寺设置了一个专门安排旅客住宿的客栈,寺庙的工作人员发现为游客准备的食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会呈现周期性的变化,并且有以下规律:
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在月份最少,在月份最多,相差约人;
③月份入住客栈的游客约为人,随后逐月增加直到月份达到最多.
(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系;
(2)请问哪几个月份要准备份以上的食物?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com