精英家教网 > 高中数学 > 题目详情
长方体ABCD-A1B1C1D1中,AB=2,AD=1,AA1=
2
,E、F分别是AB、CD的中点
(1)求证:D1E⊥平面AB1F;
(2)求直线AB与平面AB1F所成的角;
(3)求二面角A-B1F-B的大小.
以D为坐标原点,DA为x轴,DC为y轴,DD1为z轴,建系如图.

其中A(1,0,0),B(1,2,0),A1(1,0,
2
),B1(1,2,
2
),D1(0,0,
2
),
E(1,1,0),F(0,1,0)
(1)
.
D1E
=(1,1,-
2
),
.
AF
=(-1,l,0),
.
AB1
(0,2,
2
.
D1F
.
AF
=-1+1+0=0,
.
D1E
.
AB1
=0+2-
2
×
2
=0,故
.
D1F
.
AF
.
D1E
.
AB1

即D1E⊥AF,D1E⊥ABl,又ABl∩AF=A,得D1E⊥平面AB1F.
(2)
.
AB
=(0,2,0),由(1)知平面AB1F的法向量可为
D1E
=(1,1,-
2
),
设AB与平面AB1F所成的角为θ,
则sinθ=|cos<
.
D1E
.
AB
>|=|
2
2×2
|=
1
2

故AB与平面AB1F所成的角为30°
(3)
.
BF
=(-1,-1,0),
.
BB1
=(0,0,
2
),设平面BFB1的法向量为
.
n
=(x,y,z),
则有-x-y=0,
2
z=0,
令x=1,则
.
n
可为(1,-l,0),
又平面AB1F的法向量可为
.
D1E
=(1,1,-
2
),且
.
n
.
D1E
=1-1=0,
.
n
.
D1E
,即平面BFB1⊥平面AB1F
所以所求二面角大小为90°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD—A1B1C1D1中,E是CD的中点,连接AE并延长与BC的延长线交于点F,连接BE并延长交AD的延长线于点G,连接FG.求证:直线FG平面ABCD且直线FG∥直线A1B1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于直线mn和平面ab有个命题:
①当manbab时,mn    ②当mnmÌanb时,ab
③当ab = mmn时,nanb  ④当mnab = m时,nanb,
其中假命题的序号是                   。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD的对角线AC,BD交于O,AB=4,AD=3.沿AC把△ACD折起,使二面角D1-AC-B为直二面角.
(1)求直线AD1与直线DC所成角的余弦值;
(2)求二面角A-DD1-C的平面角正弦值大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥P-ABC中,∠ABC=90°,PA⊥平面ABC,且∠CPB=30°,则∠PCB=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在长方体ABCD-A1B1C1D1中,AB=2,BC=2,DD1=2
2
,则AC1与面BDD1所成角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,BC1与平面BB1D1D所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

[理]如图,在正方体ABCD-A1B1C1D1中,E是棱A1D1的中点,H为平面EDB内一点,
HC1
={2m,-2m,-m}(m<0)

(1)证明HC1⊥平面EDB;
(2)求BC1与平面EDB所成的角;
(3)若正方体的棱长为a,求三棱锥A-EDB的体积.
[文]若数列{an}的通项公式an=
1
(n+1)2
(n∈N+)
,记f(n)=(1-a1)(1-a2)…(1-an).
(1)计算f(1),f(2),f(3)的值;
(2)由(1)推测f(n)的表达式;
(3)证明(2)中你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AFDE,DE=3AF=3.
(1)求证:AC⊥平面BDE;
(2)求直线AB与平面BEF所成的角的正弦值;
(3)线段BD上是否存在点M,使得AM平面BEF?若存在,试确定点M的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案