精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
cos2
ωx
2
+
1
2
asinωx-
3
2
a(ω>0,a>0)在一个周期内的图象如图所示,其中点A为图象上的最高点,点B,C为图象与x轴的两个相邻交点,且△ABC是边长为4的正三角形.
(Ⅰ)求ω与a的值;
(Ⅱ)若f(x0)=
8
3
5
,且x0∈(-
10
3
2
3
),求f(x0-1)的值.
考点:三角函数中的恒等变换应用,由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的求值,三角函数的图像与性质
分析:(Ⅰ)首先通过三角函数的恒等变换求出函数的正弦型函数的形式,进一步利用函数的图象求出函数的周期和最值,进一步确定函数的解析式.
(Ⅱ)利用上步结论,对函数的角进行恒等变换,进一步利用函数的定义域求出函数的值,最后利用函数的值求出最终结果.
解答: 解:(Ⅰ)f(x)=
3
cos2
ωx
2
+
1
2
asinωx-
3
2
a
=asin(ωx+
π
3

由函数的图象得:BC=4=
T
2

则:T=8
所以:ω=
8
=
π
4

所以:a=BAsin
π
3
=2
3

(Ⅱ)由(Ⅰ)得:f(x)=2
3
sin(
π
4
x+
π
3
)

所以:f(x0)=2
3
sin(
π
4
x0+
π
3
)=
8
3
5

解得:sin(
π
4
x0+
π
3
)=
4
5

x0∈(-
10
3
2
3
)

所以:
π
4
x0+
π
3
∈(-
π
2
π
2
)

所以:cos(
π
4
x0+
π
3
)=
3
5

f(x0-1)=2
3
sin[(
π
4
x0+
π
3
-
π
4
)

=2
3
4
5
2
2
-
3
5
2
2

=
6
5
点评:本题考查的知识要点:三角函数关系式的恒等变换,利用函数的图象求函数的关系式,利用函数的定义域求函数的值域,进一步求函数的值.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(-1,2),
b
=(2,1),求:
(1)2
a
+3
b

(2)
a
-3
b

(3)
1
2
a
-
1
3
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C对的边分别为a,b,c,sinA+
2
sinB=2sinC,b=3,则cosC的最小值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要使函数y=ax+b有零点,则实数b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O是△ABC的外接圆,∠BAC的平分线交BC于点F,D是AF的延长线与⊙O的交点,AC的延线与⊙O的切线DE交于点E.
(1)求证:
CE
BD
=
DE
AD

(2)若BD=3
2
,EC=2,CA=6,求BF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在?ABCD中,
AB
=
a
AD
=
b
,E、F分别是AB、BC的中点,G点使
DG
=
1
3
DC
,试以
a
b
为基底表示向量
AF
EG

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+nx2(m,n∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行.
(1)求m,n的值; 
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
9
2
x2+6x-a.
(1)对?x∈R,f′(x)≥m恒成立,求m的最大值;
(2)若函数f(x)有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2-2x+5的值域是
 

查看答案和解析>>

同步练习册答案