(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.
22.
解:(1)对于非零常数T,f(x+T)=x+T,Tf(x)=Tx.
因为对任意x∈R,x+T=Tx不能恒成立,所以f(x)=x M.
(2)因为函数f(x)=ax(a>0且a≠1)的图象与函数y=x的图象有公共点,
所以方程组:有解,消去y得ax=x,
显然x=0不是方程ax=x的解,所以存在非零常数T,使aT=T.
于是对于f(x)=ax,有f(x+T)=ax+T=aT·ax=T·ax=Tf(x),
故f(x)=ax∈M.
(3)当k=0时,f(x)=0,显然f(x)=0∈M.
当k≠0时,因为f(x)=sinkx∈M,所以存在非零常数T,
对任意x∈R,有f(x+T)=Tf(x)成立,即sin(kx+kT)=Tsinkx.
因为k≠0,且x∈R,所以kx∈R,kx+kT∈R,
于是sinkx∈[-1,1],sin(kx+kT)∈[-1,1],
故要使sin(kx+kT)=Tsinkx成立,只有T=±1.
当T=1时,sin(kx+k)=sinkx成立,则k=
当T=-1时,sin(kx-k)=-sinkx成立,
即sin(kx-k+π)=sinkx成立,
则-k+π=
综合得,实数k的取值范围是{k|k=mπ,m∈Z}.
科目:高中数学 来源: 题型:
1 |
x |
a |
x2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
k | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
f(x)+λf(t) |
1+λ |
s+λt |
1+λ |
x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
a |
2 |
b |
2 |
x-1 |
1 |
2 |
1 |
2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com