精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

【答案】1)证明见解析 2 到平面的距离为

【解析】试题分析:(1)连结BDAC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,ABx轴,ADy轴,APz轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离

试题解析:(I)设BDAC于点O,连结EO

因为ABCD为矩形,所以OBD的中点。

EPD的中点,所以EO∥PB

EO平面AECPB平面AEC

所以PB∥平面AEC

II

,可得.

由题设易知,所以

所以到平面的距离为

2:等体积法

,可得.

由题设易知,BC

假设到平面的距离为d

又因为PB=

所以

又因为()

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥底面中,.回答下面的问题.

1)在侧面中能否作一条直线段使其与平行?如果能,请写出作图过程并给出证明;如果不能,请说明理由.

2)在侧面中能否作一条直线段使其与平行?如果能,请写出作图过程并给出证明;如果不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在一个周期内的简图如图所示,则函数的解析式为___________,方程的实根个数为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分14分如图,已知椭圆,其左右焦点为,过点的直线交椭圆两点,线段的中点为的中垂线与轴和轴分别交于两点,且构成等差数列.

1求椭圆的方程;

2的面积为为原点的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为是参数),圆的极坐标方程为.

(Ⅰ)求直线的普通方程与圆的直角坐标方程;

(Ⅱ)设曲线与直线的交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务的时间的统计数据如下表:

超过1小时

不超过1小时

20

8

12

m

1)求mn

2)能否有95多的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

3)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.

附:

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对某市工薪阶层关于楼市限购令的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市限购令赞成人数如下表.

月收入(单位百元)

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为月收入以5500元为分界点对楼市限购令的态度有差异;

月收入不低于55百元的人数

月收入低于55百元的人数

合计

赞成

a=______________

c=______________

______________

不赞成

b=______________

d=______________

______________

合计

______________

______________

______________

(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。

参考公式:,其中.

参考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)若有极小值且极小值为0,求的值;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若存在距离为的两条直线,使得对任意的都有,则称函数有一个宽为的通道.给出下列函数:①;②;③;④.其中在区间上通道宽度为1的函数由__________ (写出所有正确的序号).

查看答案和解析>>

同步练习册答案