精英家教网 > 高中数学 > 题目详情
(2013•宁德模拟)已知f(x)=4x+1,g(x)=4-x.若偶函数h(x)满足h(x)=mf(x)+ng(x)(其中m,n为常数),且最小值为1,则m+n=
2
3
2
3
分析:利用函数是偶函数,确定m=n,利用基本不等式求最值,确定m的值,即可得到结论.
解答:解:由题意,h(x)=mf(x)+ng(x)=m4x+m+n4-x,h(-x)=mf(-x)+ng(-x)=m4-x+m+n4x
∵h(x)为偶函数,∴h(x)=h(-x),∴m=n
∵h(x)=m(4x+4-x)+m,4x+4-x≥2
∴h(x)min=3m=1  
∴m=
1
3

∴m+n=
2
3

故答案为:
2
3
点评:本题考查函数的奇偶性,考查基本不等式的运用,考查函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁德模拟)集合U={1,2,3,4,5},集合A={2,4},则?UA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知在数列{an}中,a1=1,an+1=2an(n∈N+),数列{bn}是公差为3的等差数列,且b2=a3
(I)求数列{an}、{bn}的通项公式;
(II)求数列{an-bn}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知M={-1,0,1},N={x丨x2+x=0},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知向量
a
=(-2,1),
b
=(x+1,-2),若
a
b
,则|
a
+
b
|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)某社区以“周末你最喜爱的一个活动”为题,对该社区2000个居民进行随机抽样调查(每位被调查居民必须而且只能从运动、上网、看书、聚会、其它等五项中选择一个项目)若抽取的样本容量为50,相应的条形统计图如图所示.据此可估计该社区中最喜欢运动的居民人数为(  )

查看答案和解析>>

同步练习册答案