精英家教网 > 高中数学 > 题目详情
12.已知椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{{m}^{2}}$=1,焦点在x轴上,则m的取值范围是(  )
A.-4≤m≤4B.-4<m<4且m≠0C.m>4或m<-4D.0<m<4

分析 直接利用椭圆的焦点在x轴上,推出m的不等式,即可.

解答 解:椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{{m}^{2}}$=1,焦点在x轴上,
可得16>m2并且m≠0,
解得-4<m<4且m≠0.
故选:B.

点评 本题考查椭圆的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N*).若则b2=-4,b5=2,则a8=(  )
A.0B.3C.8D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的两焦点分别为F1(-2$\sqrt{2}$,0),F2(2$\sqrt{2}$,0),长轴长为6.
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C与A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合M={(x,y)|F(x,y)=0}为平面直角坐标系xoy内的点集,若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,则称点集M满足性质P.
给出下列四个点集:
①R={(x,y)|sinx-y+1=0}
②S={(x,y)|lnx-y=0}
③T={(x,y)|x2+y2-1=0}
④W={(x,y)|xy-1=0}
其中所有满足性质 P 的点集的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列命题:
①命题“同位角相等,两直线平行”的否命题为:“同位角不相等,两直线不平行,”.
②“x≠1”是“x2-4x+3≠0”的必要不充分条件.
③“p或q是假命题”是“¬p为真命题”的充分不必要条件.
④对于命题p:?x∈R,使得x2+2x+2≤0,则¬p:x∉R均有x2+2x+2>0
其中真命题的序号为①②③(把所有正确命题的序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知向量$\overrightarrow a$=(2,0),$\overrightarrow b$=(0,1).设向量$\overrightarrow x=\overrightarrow a+({1+cosθ})\overrightarrow b$,$\overrightarrow y=-k\overrightarrow a+{sin^2}$$θ•\overrightarrow b$,其中0<θ<$\frac{π}{2}$.
(1)若$\overrightarrow x$∥$\overrightarrow y$,且θ=$\frac{π}{3}$,求实数k的值;
(2)若$\overrightarrow x$⊥$\overrightarrow y$,求实数k的最大值,并求取最大值时cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题错误的是(  )
A.命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”
B.“am2<bm2”是“a<b”的充分不必要条件
C.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
D.命题p:存在x0∈R,使得${{x}_{0}}^{2}$+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如果执行下面的程序框图,输入n=6,m=4,求输出的p=?(要求必要的书写,不能只有数字!)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.
(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为$\frac{41}{39}$,求该圆形标志物的半径.

查看答案和解析>>

同步练习册答案